Section 13. 宇宙における元素の起源

13.1 軽元素の起源
13.2 重元素の起源
13.3 宇宙の化学進化

宇宙に存在する元素の割合

宇宙の元素組成 (質量数)

1 H		ビ	ツ	グバ	『ン												² He
³ Li	⁴ Be						下		ᡔ᠇᠋ᠴ	立7		5 B	6 C	7 N	8 O	9 F	¹⁰ Ne
11 Na	12 Mg									日り		13 A	¹⁴ Si	15 P	16 S	17 C	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28	²⁹ Cu	³⁰ Zn	³¹ Ga	³² Ge	33 As	³⁴ Se	35 Br	36 Kr
³⁷ Rb	38 Sr	39 Y	⁴⁰ Zr	41 Nb	⁴² Мо	⁴³ Tc	⁴⁴ Ru	45 Rh	46 Pd	47 Ag	48 Cd	⁴⁹ In	⁵⁰ Sn	51 Sb	⁵² Te	53	⁵⁴ Xe
55 Cs	56 Ba	^{57~71} La-Lu	72 Hf	⁷³ Ta	74 W	⁷⁵ Re	76 Os	77 Ir	⁷⁸ Pt	⁷⁹ Au	⁸⁰ Hg	81 TI	⁸² Pb	83 Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
87 Fr	⁸⁸ Ra	89~103 Ac-Lr	¹⁰⁴ Rf	105 Db	¹⁰⁶ Sg	¹⁰⁷ Bh	108 Hs	¹⁰⁹ Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og
			57 La	⁵⁸ Ce	59 Pr	60 Nd	61 Pm	⁶² Sm	63 Eu	64 Gd	65 Tb	66 Dv	67 Ho	68 Er	⁶⁹ Tm	⁷⁰ Yb	71 Lu
			⁸⁹ Ac	⁹⁰ Th	⁹¹ Pa	92 U	⁹³ Np	⁹⁴ Pu	⁹⁵ Am	96 Cm	⁹⁷ Bk	98 Cf	99 Es	100 Fm	¹⁰¹ Md	102 No	103 Lr

Section 13. 宇宙における元素の起源

13.1 軽元素の起源
13.2 重元素の起源
13.3 宇宙の化学進化

ビッグバン元素合成

http://cococubed.asu.edu/code_pages/net_bigbang.shtml

中性子は全てヘリウムへ (n/p~1/7)

$$Y = \frac{(n_n/2)(2m_p + 2m_n)}{n_p m_p + n_n m_n} \sim 0.25$$

http://hyperphysics.phy-astr.gsu.edu/hbase/Astro/bbnuc.html

質量数5,8の安定な原子核は存在しない

次に重い元素ができるのは⁴He x 3が起きる星の中 (ビッグバンでは密度が低くて起きない)

Section 13. 宇宙における元素の起源

13.1 軽元素の起源 13.2 重元素の起源 13.3 宇宙の化学進化

図の大きさは天体の大きさと一致していません

(C: Essay Web)

燃焼段階	おもな反応	おもな 生成物	温度 (10 ⁸ K)
Η	pp チェイン CNO サイクル	${}^4\mathrm{He}_{14}\mathrm{N}$	0.15 - 0.2
He	${}^{3^{4}}_{^{12}C+^{4}He} {}^{1^{2}C}_{^{16}O+\gamma}$	$^{12}_{16}C$	1.5
С	$ ^{12}C+^{12}C \longrightarrow \begin{cases} ^{23}Na+p \\ ^{20}Ne+\alpha \end{cases}$	Ne,Na Mg,Al	7
Ne	$\begin{vmatrix} ^{20}\mathrm{Ne}+\gamma \longrightarrow ^{16}\mathrm{O}+\alpha \\ ^{20}\mathrm{Ne}+\alpha \longrightarrow ^{24}\mathrm{Mg}+\gamma \end{vmatrix}$	O Mg	15
Ο	$ {}^{16}\text{O}{+}^{16}\text{O}{\longrightarrow} \begin{cases} {}^{28}\text{Si}{+}\alpha \\ {}^{31}\text{P}{+}p \end{cases} $	Si,P,S, Cl,Ar,Ca	30
Si	²⁸ Si+ $\gamma \longrightarrow {}^{24}Mg+\alpha$ ²⁴ Mg+ $\gamma \longrightarrow {}^{23}Na+p$ ²⁰ Ne+ α 多くの反応→統計平衡	Cr,Mn, Fe,Co, Ni,Cu	40

元素はいかにつくられたか(岩波書店)

恒星からの質量放出

1-6 Msun: AGB段階などでの質量放出 (Karakas 2010, MNRAS, 403, 1413) > 10 Msun: 超新星爆発 (Kobayashi et al. 2006, ApJ, 653, 1145)

元素の周期表

1 H		ピ	ツ	グリ	『ン	小中質量星											
³ Li	⁴ Be	「重力崩壊型」 超新星 「核爆発型」 超新星										5 B	6 C	7 N	8 0	9 F	¹⁰ Ne
11 Na	¹² Mg											13 A	14 Si	15 P	16 S	17 C	18 Ar
19 _K	20 Ca	21 Sc	22 i _	23 V	24 Cr	25 Mn	26 F S	27 Co	28 Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	³² Ge	33 As	³⁴ Se	³⁵ Br	³⁶ Kr
³⁷ Rb	38 Sr	39 Y	⁴⁰ Zr	⁴¹ Nb	⁴² Mo	⁴³ Tc	⁴⁴ Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	⁵² Te	53	54 Xe
55 CS	56 Ba	57~71 La-Lu	72 Hf	⁷³ Ta	74 W	⁷⁵ Re	76 Os	77 Ir	78 Pt	⁷⁹ Au	⁸⁰ Hg	81 TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
⁸⁷ Fr	⁸⁸ Ra	89~103 Ac-Lr	¹⁰⁴ Rf	¹⁰⁵ Db	¹⁰⁶ Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	¹⁰⁹ Mt	110 Ds	¹¹¹ Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og
			57 ام ا	58 (e	59 Pr	⁶⁰ Nd	61 Pm	62 Sm	63 Fu	64 Gd	65 Th	66 Dv	67 Ho	68 Fr	69 Tm	70 Yh	71
			89 Ac	⁹⁰ Th	⁹¹ Pa	92 U	⁹³ Np	⁹⁴ Pu	⁹⁵ Am	96 Cm	97 Bk	⁹⁸ Cf	99 Es	100 Fm	¹⁰¹ Md	102 No	103 Lr

鉄より重い元素 = 中性子捕獲反応 s (slow)プロセス r (rapid)プロセス n n 陽子 n n n n 中性子 n n 崩壊 崩壊 0 þ þ p D þ Ba, Pb, ... Au, Pt, U, ... 超新星?? 中性子星合体? AGB星

宇宙の元素組成 (質量数)

低質量星におけるs-process

 $^{13}\mathrm{C}{+}^{4}\mathrm{He} \rightarrow {}^{16}\mathrm{O}{+}\mathrm{n}$

T > 8 x 10⁷ K

元素はいかにつくられたか(岩波書店)

1He層とH層の底で殻燃焼 2 Heが多くなる => 暴走的反応 (フラッシュ) 3 対流が発達 => 外層が混ざる + <u>ヘリウム層に水素を</u>供給 4 ヘリウム層で以下の反応 13Cができる => 4Heと反応 =>中性子 (s-process)

 ${}^{12}C + {}^{1}H \rightarrow {}^{13}N + \gamma$ $^{13}N \rightarrow ^{13}C + e^+ + \nu$

CNO cycle

$${}^{12}C + {}^{1}H \rightarrow {}^{13}N + \gamma$$

$${}^{13}N \rightarrow {}^{13}C - e^{+} + \nu$$

$${}^{13}C + {}^{1}H \rightarrow {}^{14}N + \gamma$$

$${}^{13}C + {}^{1}H \rightarrow {}^{15}O + \gamma$$

$${}^{14}N + {}^{1}H \rightarrow {}^{15}O + \gamma$$

$${}^{15}O \rightarrow {}^{15}N + e^{+} + \nu$$

$${}^{15}N + {}^{1}H \rightarrow {}^{12}C + {}^{4}He$$

$${}^{16}O + {}^{1}H \rightarrow {}^{17}F + \gamma$$

$${}^{16}O + {}^{1}H \rightarrow {}^{17}F + \gamma$$

$${}^{17}F \rightarrow {}^{17}O + e^{+} + \nu$$

$${}^{17}O + {}^{1}H \rightarrow {}^{14}N + {}^{4}He$$

水素が少ない状況で起きると 13Cが残りやすい

核融合しているヘリウム層に 新しく水素が供給されることが重要 (AGB星のユニークな点)

Textbook by Pols

観測からの制限

最初の証拠 Tc (Z = 43, 安定核種がない元素) (Merrill 1952)

Lugaro+16

rプロセス元素の起源天体

宇宙で起きていることは確実 (1つの銀河で100年に1回)

rプロセスは起きる 宇宙でどれくらい起きている? 一回でどれくらい元素を作る? (重力波+電磁波で測られ始めた)

rプロセスを起こすの は難しいか?

元素の周期表

1 H		ピ	ッ	ゲノ	『ン			小中質量星 H									
³ Li	⁴ Be				「重	力前	∮壊 ×刑	型」 	超	新星	2	5 B	6 C	N N	8 O	9 F	¹⁰ Ne
11 Na	¹² Mg				- 12	称ナ	t¥	」 化	旦木]	生		13 A	14 Si	15 P	16 S	17 C	18 Ar
19 _K _	20 Ca	21 SC	22 	23 V	24 Cr	25 Mn	26 F S	27 Co	28 Ni	29 С П	³⁰ 7n	31 Ga	32 Ge	33 A s	34 Se	35 Rr	36 Kr
³⁷ Rb	38 Sr	39 Y	40 Zr	41 Nb	⁴² Мо	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	4 <mark>大</mark> In	Sn	SD	veak Te	s)	⁵⁴ Xe
55 Cs	56 Ba	^{57~71} La-Lu	72 Hf	⁷³ Ta	74 W	⁷⁵ Re	76 Os	77 Ir	⁷⁸ Pt	79 Au	⁸⁰ Hg	81 TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
⁸⁷ Fr	⁸⁸ Ra	89~103 Ac-Lr	104 Rf	105 Db	106 Sg	¹⁰⁷ Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og
s-pr	006	255	57	58	59 Dr	60 Nd	61 D m	62 Sm	63 Fu	64 64	65 Th	66 D v	67 Ho	68 F r	69 Tm	70 Vh	71
r-pr	006	ess	⁸⁹ Ac	90 Th	⁹¹ Pa	92 U	⁹³ Np	⁹⁴ Pu	⁹⁵ Am	96 Cm	⁹⁷ Bk	⁹⁸ Cf	99 Es	100 Fm	¹⁰¹ Md	102 No	103 Lr

Section 13. 宇宙における元素の起源

13.1 軽元素の起源 13.2 重元素の起源 <u>13.3 宇宙の化学進化</u>

過去の元素合成・放出の 歴史を反映している 「銀河考古学」

http://astronomy.swin.edu.au/cms/astro/cosmos/T/Thick+Disk

宇宙の元素組成 (質量数)

X(Fe) ~ 10⁻³

X(r) ~ 10⁻⁷ (A > 90)

r-proces元素

Cumulative (重い方から)

恒星、爆発天体による元素合成の理解は あっているか? (A) 総量 (B) タイムスケール

宇宙における元素量の進化(理論)

銀河系の星の組成比 (Mg/Fe)

Sneden+08

la型超新星の方がdelay timeが長い

銀河系の星の組成比 (r-process)

r-process元素
- Mgよりもばらつき大
=> 重力崩壊型超新星
よりもレアな天体

Sneden+08

元素の起源と宇宙の化学進化:まとめ

- 元素の起源
 - ビッグバン元素合成: H, He, Li
 - 宇宙線による破砕反応: Li, Be, B
 - 恒星内部: C-Fe (AGB星、重力崩壊型超新星、核爆発型超新星)
 - 中性子捕獲: > Fe s-process: 低・中質量星 (AGB星) r-process: 中性子星合体 or 超新星
- 銀河系の星の観測による検証

Appendix

リチウム問題 (⁷Li)

$[A/B] = \log(N_A/N_B) - \log(N_A/N_B)_{\odot}$ $A(Li) = \log(Li/H) + 12$

リチウム量

星の中での破壊 + 宇宙線破砕反応に よる合成

宇宙線による破砕反応(Li, Be, B)

宇宙線(p, alpha) + 標的 (C, N, O) => Li, Be, B

宇宙線の量 (<= 超新星) C, N, Oの量 (<= 過去の元素合成) => secondary process (傾き = 2)

Boesgaard+06

大質量星におけるs-process (weak s-process)

中性子を作る主なプロセス

 $^{22}\mathrm{Ne}{+}^{4}\mathrm{He} \rightarrow {}^{25}\mathrm{Mg}{+}\mathrm{n}$

¹⁴ N(α,γ) ¹⁸F($\beta+\nu$) ¹⁸O (α,γ) ²²Ne

 $T > 2.5 \times 10^8 K$

ヘリウム燃焼コア (元からあった14Nと反応)

Со Br Rb Cu Ga As Nb 1000 Fe Zr Ni Zn Ge Se Kr Sr Mo 32 34 36 30 26 28 38 Z = \bigotimes O16x2 100 Po \oslash 016/2 X_{i}/X_{sun} (\cdot) Q. 10 ᠿ M 0.1 95 55 65 90 100 70 75 80 85 60 Mass Number

Pignatari+10