Section 13.
宇宙における元素の起源
13.1 軽元素の起源
13.2 重元素の起源
13.3 宇宙の化学進化

宇宙に存在する元素の割合

数比

宇宙の元素組成（質量数）

元素の周期表

H	ビッグバン					
$\mathrm{Li}^{3} \mathrm{Be}^{4}$		B	$\mathrm{N}^{7} \mathrm{O}^{8}$			
Na Ma	恒星の内部	${ }_{\text {Al }}^{13}{ }^{13}$	${ }_{\text {S }}$			Ci：Ar
	Cr^{21}	${ }^{31}$	${ }^{3 / 3 s^{3}}{ }^{34}$		Br	Br
		${ }_{\text {\％1 }}^{\text {\％1 }}$	${ }^{82} \mathrm{~Pb}: \mathrm{Bi}^{83}$	${ }^{84}$		
	clit Rf Db Sg Bh Hs Mt Ds Rg	Nh：	FI：Mc	Lv		
			$\mathrm{H}^{\text {H }}$ E Er			
	Th Pa U Np Pu AmCm	Cf				

Section 13.
宇宙における元素の起源
13.1 軽元泰の起源
13.2 重元素の起源
13.3 宇宙の化学進化

ビッグバン元素合成

http：／／cococubed．asu．edu／code＿pages／net＿bigbang．shtml

$n / p \sim 1 / 7$ 元素合成
中性子の寿命

平衡が切れる
（ $\mathrm{T}^{\sim} 0.7 \mathrm{MeV}$ ）
（少し崩壊）

最初の反応

$p+n \longleftrightarrow \mathrm{D}+\gamma$
－光子のエネルギーが下がった後
（T～0．1 MeV）
－中性子が崩壊する前
＊Dの東縛エネルギー～2 MeV （photon／proton～1010）

中性子は全てヘリウムへ （ $n / p^{\sim} 1 / 7$ ）

$$
Y=\frac{\left(n_{n} / 2\right)\left(2 m_{p}+2 m_{n}\right)}{n_{p} m_{p}+n_{n} m_{n}} \sim 0.25
$$

http：／／hyperphysics．phy－astr．gsu．edu／hbase／Astro／bbnuc．html

質量数5，8の安定な原子核は存在しない

次に重い元素ができるのは4He x 3 が起きる星の中

（ビッグバンでは密度が低くて起きない）

Section 13.
宇宙における元素の起源
13.1 軽元素の起源
13.2 重元素の起源
13.3 宇宙の化学進化

星の一生

惑星状星澐

超新星爆発
赤色超巨星

星間空間

図の大きさは天体の大きさと一致していません
（C：Essay Web）

白色矮星

燃焼段階	おもな反応	おもな生成物	$\begin{gathered} \text { 温度 } \\ \left(10^{8} \mathrm{~K}\right) \end{gathered}$
H	$\begin{aligned} & \text { pp チェイン } \\ & \text { CNOサイクル } \end{aligned}$	${ }^{{ }^{4} \mathrm{He}^{\mathrm{N}} \mathrm{~N}}$	0．15－0．2
He	$\begin{aligned} & 3^{4} \mathrm{He} \longrightarrow{ }^{12} \mathrm{C} \\ & { }^{12} \mathrm{C}+{ }^{4} \mathrm{He} \xrightarrow{16} \mathrm{O}+\gamma \end{aligned}$	$\begin{aligned} & { }^{12} \mathrm{C} \\ & { }^{16} \mathrm{O} \end{aligned}$	1.5
C	${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C} \longrightarrow\left\{\begin{array}{l} { }^{23} \mathrm{Na}+\mathrm{p} \\ { }^{20} \mathrm{Ne}+\alpha \end{array}\right.$	$\begin{aligned} & \mathrm{Ne}, \mathrm{Na} \\ & \mathrm{Mg}, \mathrm{Al} \end{aligned}$	7
Ne	$\begin{aligned} & { }^{20} \mathrm{Ne}+\gamma \longrightarrow{ }^{16} \mathrm{O}+\alpha \\ & { }^{20} \mathrm{Ne}+\alpha \longrightarrow{ }^{24} \mathrm{Mg}+\gamma \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \mathrm{Mg} \end{gathered}$	15
O	${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O} \longrightarrow\left\{\begin{array}{l} { }^{28} \mathrm{Si}+\alpha \\ { }^{31} \mathrm{P}+\mathrm{p} \end{array}\right.$	$\begin{gathered} \mathrm{Si}, \mathrm{P}, \mathrm{~S} \\ \mathrm{Cl}, \mathrm{Ar}, \mathrm{Ca} \end{gathered}$	30
Si	$\begin{aligned} & { }^{28} \mathrm{Si}+\gamma \longrightarrow{ }^{24} \mathrm{Mg}+\alpha \\ & { }^{24} \mathrm{Mg}+\gamma \longrightarrow\left\{\begin{array}{l} 23 \mathrm{Na}+\mathrm{p} \\ 20 \mathrm{Ne}+\alpha \end{array}\right. \\ & \text { 多くの反応 } \longrightarrow \text { 統計平衡 } \end{aligned}$	Cr, Mn ， Fe, Co ， Ni, Cu	40

元素はいかにつくられたか（岩波書店）

恒星からの質量放出

1－6 Msun：AGB段階などでの質量放出（Karakas 2010，MNRAS，403，1413）
＞ 10 Msun：超新星爆発（Kobayashi et al．2006，ApJ，653，1145）

元素の周期表

銑より重い元素＝中性子捕顀反応

s （slow）プロセス

r（rapid）プロセス

$\mathrm{Ba}, \mathrm{Pb}, . .$.
AGB㞔

$\mathrm{Au}, \mathrm{Pt}, \mathrm{U}, \ldots$
超新星？？中性子星合体？

核図表

宇宙の元素組成（質量数）

低質量星におけるs－process

中性子を作る主なプロセス

$$
{ }^{13} \mathrm{C}+{ }^{4} \mathrm{He} \rightarrow{ }^{16} \mathrm{O}+\mathrm{n}
$$

元素はいかにつくられたか（岩波書店）

1 He層とH層の底で殼燃㳣 2 Heが多くなる ＝＞暴走的反応（フラッシュ） 3 対流が発達＝＞外層が混ざる
＋ヘリウム層に水素を供給
4ヘリウム層で以下の反応 13Cができる＝＞4Heと反応 ＝＞中性子（s－process）

$$
\begin{aligned}
{ }^{12} \mathrm{C}+{ }^{1} \mathrm{H} & \rightarrow{ }^{13} \mathrm{~N}+\gamma \\
{ }^{13} \mathrm{~N} & \rightarrow{ }^{13} \mathrm{C}+\mathrm{e}^{+}+v
\end{aligned}
$$

CNO cycle

$$
\begin{aligned}
{ }^{12} \mathrm{C}+{ }^{1} \mathrm{H} & \rightarrow{ }^{13} \mathrm{~N}+\gamma \\
{ }^{13} \mathrm{~N} & \rightarrow{ }^{13} \mathrm{C}-\mathrm{e}^{+}+v \\
{ }^{13} \mathrm{C}+{ }^{1} \mathrm{H} & \rightarrow{ }^{14} \mathrm{~N}+\gamma \\
{ }^{14} \mathrm{~N}+{ }^{1} \mathrm{H} & \rightarrow{ }^{15} \mathrm{O}+\gamma \\
{ }^{15} \mathrm{O} & \rightarrow{ }^{15} \mathrm{~N}+\mathrm{e}^{+}+v \\
{ }^{15} \mathrm{~N}+{ }^{1} \mathrm{H} & \rightarrow{ }^{12} \mathrm{C}+{ }^{4} \mathrm{He} \\
& \rightarrow{ }^{16} \mathrm{O}+\gamma \\
{ }^{16} \mathrm{O}+{ }^{1} \mathrm{H} & \rightarrow{ }^{17} \mathrm{~F}+\gamma \\
{ }^{17} \mathrm{~F} & \rightarrow{ }^{17} \mathrm{O}+\mathrm{e}^{+}+v \\
{ }^{17} \mathrm{O}+{ }^{1} \mathrm{H} & \rightarrow{ }^{14} \mathrm{~N}+{ }^{4} \mathrm{He}
\end{aligned}
$$

水素が少ない状況で起きると 13Cが残りやすい

> 核融合しているヘリウム層に新しく水素が供給されることが重要 （AGB星のユニークな点）

Textbook by Pols

最初の証拠

権測からの制限

Tc（Z＝43，安定核種がない元素）

 （Merrill 1952）

rプロセス元素の起源天体

超新星

宇宙で起きていることは確実
（1つの銀河で100年に1回）

中性子星合体

rプロセスは起きる

宇宙でどれくらい起きている？
一回でどれくらい元素を作る？
（重力波＋電磁波で測られ始めた）
rプロセスを起こすの は難しいか？

元素の周期表

H													小中				He
L	Be^{4}				「重力崩壊型」超新星 「核爆発型」超新星							$\begin{aligned} & 5 \\ & B \end{aligned}$			${ }^{8}$	F	
													${ }^{14}$	15	16		
19	a	Sc		V		Mr		Co	Ni	C			（1）		Se		
$\begin{array}{r} 37 \\ R k \\ \hline \end{array}$	38	39	40	41	42	43	44	45	46	47	48						
	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	SD：	Ie		Xe
$\begin{aligned} & 55 \\ & C^{55} \\ & \hline \end{aligned}$	56	5j／～1	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Ba	La－Lu：	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Til	Pb	Bi	Po	At	R
$\begin{aligned} & 87 \\ & \mathrm{Fr} \\ & \hline \end{aligned}$	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	Ra：	Ac		Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	LV		8

Section 13.
宇宙における元素の起源
13.1 軽元素の起源
13.2 重元素の起源
13.3 宇宙の化学進化

銀河歪

過去の元殔合成•放出の歴史を反映している「銀河荅古学」

Thin disk：stars／gas

Bulge：stars

http：／／astronomy．swin．edu．au／cms／astro／cosmos／T／Thick＋Disk

宇宙の元素組成（質量数）

r－proces元禀

$X(r) \sim 10^{-7}$
 （ $\mathrm{A}>90$ ）

Cumulative （重い方から）

恒星，爆発天体による元素合成の理解は あっているか？
（A）総量
（B）タイムスケール

宇宙における元素量の進化（理觵）

銀河系の星の組成比（Mg／Fe）

Sneden＋08
時間

Ia型超新星の方がdelay timeが長い

*

*

$\star *$
\#

Time
π

Time

Time

Time

5

[Fe/H]

[$\mathrm{Mg} / \mathrm{Fe}$]

銀河系の星の組成比（r－process）

r－process元素

－Mgよりもばらつき大
＝＞重力崩壊型超新星 よりもレアな天体

元素の起源と宇宙の化学進化：まとめ

- 元素の起源
- ビッグバン元素合成：H，He，Li
- 宇宙線による破砕反応：Li，Be，B
- 恒星内部：C－Fe
（AGB星，重力崩壊型超新星，核爆発型超新星）
－中性子捕獲：＞Fe
s－process：低•中質量星（AGB星）
r－process：中性子星合体 or 超新星
－銀河系の星の観測による検証

Appendix

リチウム問題（7Li）

$$
\begin{aligned}
{[\mathrm{A} / \mathrm{B}] } & =\log \left(N_{\mathrm{A}} / N_{\mathrm{B}}\right)-\log \left(N_{\mathrm{A}} / N_{\mathrm{B}}\right)_{\odot} \\
A(\mathrm{Li}) & =\log (\mathrm{Li} / \mathrm{H})+12
\end{aligned}
$$

リチウム量

星の中での破壊 ＋
宇宙線破碎反応に よる合成

金属量

宇宙線による破砕反応（Li，Be，B）

宁宙線（p，alpha）

+ 標的 (C, N, O)
＝＞Li，Be，B

宇宙線の量（＜＝超新星）
C， N, O の量（＜＝過去の元素合成）
＝＞secondary process（傾き＝2）

中性子を作る主なプロセス

大質量星におけるs－process （weak s－process）

ヘリウム燃㸿コア （元からあった14Nと反応）

$$
{ }^{14} \mathrm{~N}(\alpha, \gamma)^{18 \mathrm{~F}}(\beta+v)^{18 \mathrm{O}}(\alpha, \gamma)^{22} \mathrm{Ne}
$$

