恒星物理学II

7セメ 金曜2限

田中 雅臣 (東北大学 天文学専攻)

田中 雅臣

愛知県出身 39歳 名古屋市生まれ、知多半島育ち

研究

- 天文学・天体物理学
- 観測・理論 (シミュレーション)
- 宇宙における突発的現象の物理
 (超新星爆発や中性子星合体)
 宇宙における元素の起源

1998-2001: 愛知県半田高校 2001-2005: 東京大学 2005-2009: 東京大学大学院 2009-2011: 東京大学 Kavli IPMU 2011-2018: 国立天文台 2018- 現在: 東北大学

この講義の目標

これまで学んできた物理を総合的に用いて、
 恒星の性質と進化を理解する

● 天文学研究を行うのに必要な恒星進化論の基礎を理解する

天文学は好きですか?

今までの3年間を振り返ると、、、

相対論

統計力学

流体力学

天体物理学!(4セメ)

熱力学 3セメ

統計力学 5,6セメ

恒星物理学II (7セメ)

<mark>熱力学</mark> 3セメ

4,5セメ

この講義の目標

これまで学んできた物理を総合的に用いて、
 恒星の性質と進化を理解する

● 天文学研究を行うのに必要な恒星進化論の基礎を理解する

3年間物理を頑張った人へのご褒美 物理を使って、宇宙を生き生きと理解する

https://www.astr.tohoku.ac.jp/~masaomi.tanaka/sap2022/

予習・復習

- 板書した式の意味を追う
- 実際の値を入れて計算してみる (実感する)
- 本当に理解したい人 => 教科書を読む

講義中に説明できるのは恒星物理学の入り口だけです

質問など

- 講義中にどんどん発言・質問してください
- それ以外:Google Classroomで随時受け付けます

成績のつけ方

- レポート100% (5回の予定、なるべく前半に集中)

Section 1. 概論

なぜ恒星物理・恒星進化を学ぶのか?

ツッコミを入れる練習 Hertzsprung-Russel diagram (HR図)

Luminosity (Lsun)

Temperature (K)

http://astronomy.nmsu.edu/geas/lectures/lecture23/slide04.html

疑問に思うことを書き出してみる

● (当日出た質問)

- なぜ主系列と赤色巨星の間には星がいないの?
 白色矮星に向かう経路には星がいないの?
- なぜ赤色巨星の半径には規則性がないの?
- 宇宙のどこで見てもHR図は同じなの?

太陽の明るさ = 4 x 10²⁶ J/s (= W) = 4 x 10³³ erg/s

(C) JAXA/ISAS

日本の一年の消費電力 = 2 x 10¹⁹ J = 2 x 10²⁶ erg 日本が10⁷ 年 = 1000万年かけて使うエネルギーを1秒で放射

そもそもなぜこんなに明るいの??

太陽はなぜ明るく輝くのだろう?

A. 化学反応

https://www.britannica.com/science/chemical-reaction

(例) C+ O₂ -> CO₂

原子や分子がくっつく = 原子核は変わらない

<section-header><section-header>

(例) H + H + H + H -> He

原子核が変わる = 新しい元素ができる

太陽を約100億年 輝かせることができる

エネルギー源: E = mc²

核融合 H

本当にそんなことが起きるの? どうやって??

元素の種類が変わるのを間近で見たことがある人は ほとんどいないはず!

質量と半径の関係 (主系列星)

「主系列星」 重い星の方が 半径が大きい

なぜ?

Lecture Note by Pols

質量と半径の関係 (白色矮星)

Provencal et al. 1998

白色矮星は関係が逆、、、なぜ?

質量と光度の関係 (主系列星)

光度 L~104 Lsun => 寿命 ~太陽の1/103 ~10¹⁰ yr (100億年)/10³ ~10⁷ yr (1000万年) 重い星の方が 寿命が短い

Lecture Note by Pols

惑星状星雲

星:生まれた時の質量で運命が変わる。なぜ?

人間の運命は出生時体重では全然決まらない!

図の大きさは天体の大きさと一致していません

(C: Essay Web)

超新星爆発!

1 H		ピ	ツ	ゲバ	『ン		~25% He										
³ Li	⁴ Be			_			5 B	6 (7 N	8 ()	9 F	10 Ne					
11 Na	12 Mg	生		Ψ ¹			13 A	14 Si	15 P	16 S	17 C	18 Ar					
19 K	²⁰ Ca	21 Sc	22 Ti	23 V	24 Cr	²⁵ Mn	26 Fe	27 Co	28 Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	³² Ge	33 As	³⁴ Se	³⁵ Br	³⁶ Kr
³⁷ Rb	³⁸ Sr	39 Y	⁴⁰ Zr	41 Nb	⁴² Мо	43 Tc	⁴⁴ Ru	45 Rh	⁴⁶ Pd	⁴⁷ Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	⁵² Te	53 	⁵⁴ Xe
55 Cs	56 Ba	^{57~71} La-Lu	⁷² Hf	⁷³ Ta	74 W	⁷⁵ Re	76 Os	77 Ir	⁷⁸ Pt	⁷⁹ Au	⁸⁰ Hg	81 TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
⁸⁷ Fr	⁸⁸ Ra	89~103 Ac-Lr	¹⁰⁴ Rf	¹⁰⁵ Db	¹⁰⁶ Sg	¹⁰⁷ Bh	108 Hs	¹⁰⁹ Mt	110 Ds	¹¹¹ Rg	112 Cn	113 Nh	114 FI	115 Mc	116 Lv	117 Ts	118 Og
			57 La	⁵⁸ Ce	59 Pr	60 Nd	61 Pm	62 Sm	⁶³ Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	⁶⁹ Tm	70 Yb	71 Lu
			⁸⁹ Ac	⁹⁰ Th	91 Pa	92 U	⁹³ Np	⁹⁴ Pu	⁹⁵ Am	⁹⁶ Cm	97 Bk	⁹⁸ Cf	99 Es	100 Fm	¹⁰¹ Md	102 No	103 Lr

図の大きさは天体の大きさと一致していません

(C: Essay Web)

何も起きない

図の大きさは天体の大きさと一致していません

重い星

鉄まで作る。なぜ鉄?? なんで爆発するの?

軽い星

炭素・酸素で止まる。なぜ止まる?? 爆発しないの?

そもそも星ってなんで星でいられるの? (ほとんどの星は爆発しない)

私は銀河にしか興味がありません、という方へ

- 星を作っている => 若い星が多い => 大質量星が多い => 青い (星の温度が高い)

恒星の性質 = 銀河の性質を理解する基礎

さまざまな疑問を<mark>物理</mark>を使って理解しよう

- 星の中はどうなっているの?
- なぜ重い星の方が大きいの?
- なぜ星は明るく輝くの?
- なぜ重い星の方が明るいの?
- なぜ星は「進化」するの?
- なぜ質量で星の運命が変わるの?
- なぜ星は星でいられるの?
- なぜ一部の星は爆発するの?

この講義の目標

これまで学んできた物理を総合的に用いて、
 恒星の性質と進化を理解する

● 天文学研究を行うのに必要な恒星進化論の基礎を理解する

3年間物理を頑張った人へのご褒美 物理を使って、宇宙を生き生きと理解する

恒星物理学II (7セメ)

<mark>熱力学</mark> 3セメ

4,5セメ

レポート課題 5

1. 宇宙に存在する様々な天体のサイズと質量を調べて、 2次元平面に書き込む

2. 以下などをやってみて、考察する

- 原子と原子核も書き込む

- ...

- 一定密度の線を引いてみる
- ブラックホールの線を引いてみる (相対論)
- 不確定性原理の限界線を引いてみる (量子力学)

Appendix

大気モデルの不定性が残る

Tremblay et al. 2017

