Section 4. 恒星の構造と性質 (2)

4.1 光の拡散

4.2 恒星の質量-光度関係

Hertzsprung-Russel diagram (HR図)

Luminosity (Lsun)

Temperature (K)

http://astronomy.nmsu.edu/geas/lectures/lecture23/slide04.html

質量と光度の関係 (主系列星)

Lecture Note by Pols

さまざまな疑問を<mark>物理</mark>を使って理解しよう

- 星の中はどうなっているの?
- なぜ重い星の方が大きいの?
- なぜ星は明るく輝くの?
- なぜ重い星の方が明るいの?
- なぜ星は「進化」するの?
- なぜ質量で星の運命が変わるの?
- なぜ星は星でいられるの?
- なぜ一部の星は爆発するの?

星の内部の不透明度

Lecture Note by Pols

Bound-free opacity

Rybicki & Lightman

主系列星の スペクトル

Туре	M (Msun)
0	20-60
B	3-18
Α	2-3
F	1.1-1.6
G	0.9-1.05
K	0.6-0.8
Μ	0.08-0.5

http://www.astronomy.ohio-state.edu/~pogge/Ast162/Unit1/SpTypes/index.html

銀河への応用

- 星を作っている => 若い星が多い => 大質量星が多い => 青い (星の温度が高い)

- 星を作っていない => 古い星が多い => 小質量星が多い => 赤い (星の温度が低い)

銀河のスペクトル

Bruzual & Charlot 2003

まとめ

- 星の内部の不透明度
 - 電子散乱
 - free-free and bound-free 吸収
- 星の光度の概算
 - $t_{esc} \sim (R/c) \tau$ (<= $\tau = \kappa \rho R$)
 - $L \sim E/t_{esc} => L \sim M^{3-5}$
- 星の性質
 - 重い星ほど明るい L~M4 (寿命が短い t~M-3)
 - 重い星ほど表面温度が高い Teff ~ M^{0.5}
 - 銀河のスペクトルを理解する基礎