Section 5. Stellar evolution (II)

5.1 Equation of state5.2 Evolutionary track

Goals of this lecture

- Standard properties of stars
 - Stellar structure and properties
 - Stellar evolution
- Origin of the elements in the Universe
 - Nucleosynthesis in stars and supernovae
 - Explosion mechanism of supernovae
- Topics in time-domain astronomy
 - Radiation from explosive phenomena
 - Multi-messenger astronomy

Section 5. Stellar evolution (II)

5.1 Equation of state5.2 Evolutionary track

Stellar life

Planetary Nebula

Why does the destiny of the stars depend on the mass?

Microscopic properties of the gas play important roles

Assignment 2

2a. Derive pressure of ideal gas from the Maxwell distribution

- 2b. Derive pressure of degenerate electrons (both for non-relativistic case and relativistic case)
- **2c.** Derive radiation pressure from Planck function
- 2d. Draw the regions where
- ideal gas pressure
- degenerate pressure of non-relativistic electrons
- degenerate pressure of relativistic electrons
- radiation pressure

become dominant in the rho-T diagram.

レポート課題 2

2a. マクスウェル分布から 理想気体の圧力の式を導け

2b. 電子が非相対論的、超相対論的なときの 縮退圧の式を導き、実際に数字を入れて計算せよ

2c. プランク関数から輻射圧の式を導け

- 2d. 密度 温度平面で
- 理想気体のガス圧
- 電子の縮退圧(非相対論的)
- 電子の縮退圧(超相対論的)

- 輻射圧

がそれぞれ支配的になる境界を求め、図示せよ

1. Massive stars

M > 10 Msun

1-10 Gyr

2. Low-mass stars M < 10 Msun

Stellar Cloud with Protostars

図の大きさは天体の大きさと一致していません 🔰 🚺

(C: Essay Web)

Stars can be supported by electron degeneracy pressure White dwarf

He

C + O

C + O

Η

White dwarf: supported degeneracy pressure

温度がゼロでも圧力が生まれる

P is non-zero even at T=0

星が「死ぬ」とはどういうことか (ベレ出版)

Section 5. Stellar evolution (II)

5.1 Equation of state5.2 Evolutionary track

Contraction of the core = Expansion of the envelope

Shell burning => energy generation (more than required to support the envelope)

Low/intermediate mass stars

Core contraction => Expansion of the envelope => Red giant

Paxton et al. 2011

Massive stars (until He-burning)

Core contraction => Expansion of the envelope => Red super giant

Paxton et al. 2011

Contraction of the core = Expansion of the envelope

Evolution in the rho-T plane is determined by the properties of the core $T \sim M^{2/3} \rho^{1/3}$ M decreases => Lower part of the p-T plane

Massive stars (until Si burning)

Finally degeneracy pressure becomes important

textbook by Pols

MESA code <u>http://mesa.sourceforge.net/index.html</u>

MESA

Modules for Experiments in Stellar Astrophysics

MESA home

code capabilities preregs & installation

getting started

using pgstar

using MESA output

beyond inlists (extending MESA)

troubleshooting

FAQ

- star_job defaults controls defaults pgstar defaults
- binary_controls defaults news archive

documentation archive

You may also want to visit **the MESA community portal**, where users share the inlists from their published results, tools & utilities, and teaching materials.

Why a new 1D stellar evolution code?

The MESA Manifesto discusses the motivation for the MESA project, outlines a MESA code of conduct, and describes the establishment of a MESA Council. Before using MESA, you should read the **manifesto document**. Here's a brief extract of some of the key points

Stellar evolution calculations remain a basic tool of broad impact for astrophysics. New observations constantly test the models, even in 1D. The continued demand requires the construction of a general, modern stellar evolution code that combines the following advantages:

- Openness: anyone can download sources from the website.
- Modularity: independent modules for physics and for numerical algorithms; the parts can be used stand-alone.
- Wide Applicability: capable of calculating the evolution of stars in a wide range of environments.
- Modern Techniques: advanced AMR, fully coupled solution for composition and abundances, mass loss and gain, etc.
- Comprehensive Microphysics: up-to-date, wide-ranging, flexible, and

Latest News

- 10 Aug 2016
 » Documentation Archive
- 19 Jun 2016
 » Release 8845
- 03 Feb 2016
 » Release 8118
- 29 Jan 2016
 » New MESA SDK Version
- 10 Jan 2016
 » Summer School 2016
- 27 Sep 2015
 » Instrument Paper 3
- 14 Sep 2015
 » MESA-Web Updates
- 08 Sep 2015
 New MESA SDK Version
- 03 Sep 2015
 » Updated MESA Maps
- 27 Aug 2015
 » Summer School Success!

1 Msun (ρ-Τ)

1 Msun (HR diagram)

20 Msun (ρ-Τ)

20 Msun (HR diagram)

Summary: stellar evolution (II)

- Properties of gas (microscopic)
 => properties of stars (macroscopic)
- Equation of states
 - Ideal gas P ~ ρT
 - Degeneracy pressure P ~ $\rho^{5/3}$ (non-rel)、 P ~ $\rho^{4/3}$ (rel)
 - Radiation pressure P ~ T⁴
 - => Important in different areas in the rho-T diagram
- Stellar evolution
 - Stars stop contraction when supported by degeneracy pressure
 No temperature rise => End of nuclear burning
 - The core of low mass stars become generate

Let's understand these questions with the word of physics

Knowing **\u03e4** Understanding

- Why do some stars explode?
- Why don't normal star explode?
- Why do stars show L ~ M4?
- Why do stars evolve?
- Why does the destiny of stars depend on the mass?
- Why does stellar core collapses?
- Why is the energy of supernova so huge?

Thermodynamics

Classical mechanics

Electromagnetism

Statistical mechanics

Astrophysics

Hydrodynamics

Quantum mechanics

Relativity

Nuclear physics