Section 9. Radiation from supernovae

9.1 Observations of supernovae

9.2 Radiation mechanism of supernovae

Goals of this lecture

- Standard properties of stars
 - Stellar structure and properties
 - Stellar evolution
- Origin of the elements in the Universe
 - Nucleosynthesis in stars and supernovae
 - Explosion mechanism of supernovae
- Topics in time-domain astronomy
 - Radiation from explosive phenomena
 - Multi-messenger astronomy

Section 9. Radiation from supernovae

9.1 Observations of supernovae

9.2 Radiation mechanism of supernovae

Spot the difference!!

Spot the difference! (level **)

(C) Rod Pommier <u>https://www.sbig.com</u>

Answer

(C) Rod Pommier <u>https://www.sbig.com</u>

Observations of transients

• Light curve

• Time evolution of luminosity (total or in a certain band)

Spectra

 Flux as a function of wavelengths (and their time evolution)

Light curves

Type I - Peak - L(Ia) > L(Ib, Ic)

Type II - plateau - L(Ia) > L(II)

Spectra of supernovae

- Thermal continuum
- Broad absorption
- Doppler shift
- Associated with emission component

Line profile

"P-Cygni" Profile

Observer

Doppler effects

$$\lambda = \left(\frac{c-v}{c}\right)\lambda_0$$

$$\frac{v}{c} = \frac{(\lambda_0 - \lambda)}{\lambda_0}$$

Line profile

v/c = 163/6563
=>
v = 0.025 x c
~ 7,000 km/s

Section 9. Radiation from supernovae

9.1 Observations of supernovae9.2 Radiation mechanism of supernovae

Light curves

Type I - Peak - L(Ia) > L(Ib, Ic)

Type II - plateau - L(Ia) > L(II)

What determines the luminosity and timescale of radiation?

What can we learn from observations?

Heating source of supernovae

1. Radioactivity (56Ni)

Important in all the types Type Ia > Core-collapse

2. Shock heating

Important for large-radius star (Type II)

3. Interaction with CSM Ekin => Eth (Type IIn)

4. Magnetar?
Erot => energy loss by spin down

56Ni

Nadyozhin 94

e capture ⁵⁶Ni \Rightarrow ⁵⁶Co + γ + ν_e .

τ = **8.8** days

56**CO**

Opacity in supernova ejecta (Type Ia SN, $\rho = 10^{-13}$ g cm⁻³)

Pinto & Eastman 2000

Light curves

1043 erg s-1

Observations <=> physical quantities

Spectra

E, Mej, M(56Ni), X (element)

Summary: Radiation from supernovae

- Erad ~ 10⁴⁹ erg
 << Ekin (10⁵¹ erg) << Egrav (10⁵³ erg)
- Power source
 - Radioactivity (⁵⁶Ni)
 - Shock heating, interaction with CSM, magnetar, ...
- Timescale of emission
 - Photons diffuse out from SN ejecta
 - bound-bound transitions and e-scattering
 - Typical timescale t ~ κ^{1/2} Mej^{3/4} Ek^{-1/4}
 ~ κ^{1/2} Mej^{1/2} v^{-1/2}