Section 11. Neutron star merger

11.1 Neutron star merger11.2 Observations of gravitational wave sources

## **Cosmic abundances**



## Neutron-capture nucleosynthesis

## s (slow)-process



## Ba, Pb, ... Inside of stars

## r (rapid)-process





Au, Pt, U, ... SN? NS merger?

#### **Origin of r-process elements?**

#### Some phenomena related to neutron star

#### Supernova



#### **Neutron star merger**



~ 1 event per 100 yr in a galaxy (R ~ 10<sup>-2</sup> yr-1) ~ 1 event per 10,000 yr in a galaxy (R ~ 10<sup>-4</sup> yr-1)



#### NS merger => mass ejection

#### Top view

Side view



Sekiguchi+15, 16

M ~ 10<sup>-3</sup> - 10<sup>-2</sup> Msun v ~ 0.1 - 0.2 c



Why some material are ejected? (NS has an extremely strong gravity!)

## r-process in NS merger



(C) Nobuya Nishimura

#### Radioactive decay (Beta decay)



$$n \rightarrow p^+ + e^- + \bar{\nu_e}$$

#### Radioactively powered transients similar to SN (56Ni) => "kilonova"



#### How to find NS merger??

## **Gravitational waves!**

(C) LIGO/T. Pyle

Section 11. Neutron star merger

11.1 Neutron star merger11.2 Observations of gravitational wave sources

# The first GW detection (GW150914)

Merger of binary black hole





## The first GW detection From NS merger (GW170817)

Normalized amplitude 0 2 6 500 LIGO-Hanford 100 50 500 LIGO-Livingston Frequency (Hz) 100 50 500 Virgo 100 50 -20 -30 -10 0 Time (seconds)

LIGO Scientific Collaboration and Virgo Collaboration, 2017, PRL

#### Search for electromagnetic (EM) counterpart

hscMap

背景の天の川:ESO/S.Brunier

Coulter+17, Soares-Santos+17, Valenti+17, Arcavi+17, Tanvir+17, Lipunov+17

Movie: Utsumi, MT+17, Tominaga, MT+18

### EM counterpart of GW170817 @ 40 Mpc = "Kilonova"



**Optical (z)** near IR (H) near IR (Ks)

#### Mej ~ 0.05 Msun

Enough to explain the total mass of r-process elements (if R ~ 10<sup>-4</sup> yr<sup>-1</sup> Gal<sup>-1</sup>)

## Many open issues

- Physical origin of the ejecta
  - Dynamical ejecta and disk ejecta?
- Production rate
  - Event rate? => more GW events
  - Are kilonova (mass ejection) always the same?
- Elemental abundances
  - Which elements are produced?
  - How massive elements? Fission?
  - Similar to solar abundance ratios?

## **GW** observing runs



https://www.ligo.org/scientists/GWEMalerts.php

#### GW190425: 2nd NS-NS merger event



https://www.ligo.org/detections/GW190425.php

#### What is the kilonova signal?

#### Skymap of GW190425



LVC 2020

#### No convincing counterpart was identified...

## Summary

## • NS merger

- Ejection of material by tidal disruption
  - (+ ejection from accretion disk)
- r-process => radioactive decay => kilonova
- Observations of GW sources
  - Kilonova is observed
  - Production rate fulfills the necessary condition

## • Future

- Identification of elements or abundance pattern
- Understanding the variety (production rate)
- More events with better localization

Let's understand these questions with the word of physics

Knowing **\u03e4** Understanding

- Why do some stars explode?
- Why don't normal star explode?
- Why do stars show L ~ M4?
- Why do stars evolve?
- Why does the destiny of stars depend on the mass?
- Why does stellar core collapses?
- Why is the energy of supernova so huge?



Thermodynamics

Classical mechanics

Electromagnetism

Statistical mechanics

## Astrophysics

**Hydrodynamics** 

Quantum mechanics

Relativity

**Nuclear physics** 

## Appendix

#### **Relavant timescales**



## Explosive phenomena around the neutron star

#### **Core-collapse supernova**



Moderately neutron rich Ye ~ 0.45 (n<sub>n</sub> ~ 1.2n<sub>p</sub>)

#### **NS** merger



Very neutron rich Ye ~ 0.10 (n<sub>n</sub> ~ 9 n<sub>p</sub>)

$$Y_e = \frac{n_e}{n_p + n_n} = \frac{n_p}{n_p + n_n}$$

n<sub>n</sub> = n<sub>p</sub> for Ye = 0.50

## **Core-collapse supernovae**



Wanajo+11, Wanajo 14

Probably neutron rich but only moderately Ye ~ 0.45 (n<sub>n</sub> ~ 1.2n<sub>p</sub>)

### Neutron star merger

#### Top view

Side view



Sekiguchi+15, 16

Very neutron rich (Composition of neutron star Ye ~ 0.10 (n<sub>n</sub> ~ 9 n<sub>p</sub>)