Section 2. Stellar structure and properties (1)
2.1 Hydrostatic equilibrium
2.2 Nuclear burning

Let's understand these questions with the words of physics

- Why are stars so luminous?
- Why do stars show L~M ${ }^{4}$?
- Why do stars evolve?
- Why does the destiny of stars depend on the mass?
- Why do some stars explode?
- Why don't normal star explode?
- Why does stellar core collapses?
- Why is the energy of supernova so huge?

Our sun

$\mathrm{L}=4 \times 10^{33} \mathrm{erg} / \mathrm{s}=4 \times 10^{26} \mathrm{~J} / \mathrm{s}(\mathrm{W})$
Electronic power consumption in Japan
$1.5 \times 10^{19} \mathrm{~J} /$ year
==> Japanese power consumption for $2 \times 10^{7} \mathrm{yr}$
= solar radiation in 1 second

Energy source：E＝mc²

Q1：How much energy is released for one nucleon？（核子あたり） $\mathrm{E}=\Delta \mathrm{mc}^{2}$

$$
\text { Solar mass : } \mathbf{2 \times 1 0 ^ { 3 3 }} \mathrm{g}
$$

Q2：How much energy does the Sun can produce？
（assume 10\％of solar mass can be used for nuclear burning）
Q3：How many years the sun can keep shining？

$$
\mathrm{L}=4 \times 10^{33} \mathrm{erg} / \mathrm{s} \quad 1 \mathrm{yr} \sim 3 \times 10^{7} \mathrm{sec}
$$

Binding energy of nuclei

$\mathrm{Eb}=\left[\mathrm{Nm}_{\mathrm{N}}+\mathrm{Zm}_{\mathrm{p}}-\mathrm{m}_{\mathrm{i}}\right] \mathrm{c}^{\mathbf{2}}$

$$
P+n
$$

Nuclei

Higher binding energy
= strongly "bound"
= more stable
= "lighter"

Fe is the most stable nucleus

What is going on at the center of the star?

 How does nuclear burning occurs?
Nuclear burning
 Coulomb barrier $\mathrm{E} \sim\left(\mathrm{Z}_{1} \mathrm{Z}_{2} \mathrm{e}^{2}\right) / \mathrm{r} \sim 1 \mathbf{1 0}^{6} \mathrm{eV}(\mathrm{MeV})$ Typical energy of the gas E ~ kT ~ $10^{3} \mathrm{eV}(\mathrm{keV})<=10^{7} \mathrm{~K}$

=> Tunnel effects

Textbook by Pols

Condition of H-burning

Lecture Note by Pols

Hertzsprung-Russel diagram

Luminosity

Mass - radius relation for the main sequence

Outcome of the central property of the star

Lecture Note by Pols

Summary: Stellar structure and properties (I)

- Energy source of the stars
- Nuclear burning
- $\mathrm{E}=\mathrm{mc}^{2}$
- Stellar structure
- Hydrostatic Equilibrium
- Central temperature of the stars $\mathrm{T}^{\sim} \mathbf{1 0}^{7} \mathrm{~K}$
- Require tunnel effects for nuclear burning
- Stellar properties
- Almost constant central T => R ~ M
- Observed mass-radius relation ($\mathbf{R}^{\sim} \mathrm{M}^{0.7}$)

Appendix

Virial theorem
 (galaxy clusters)

Velocity of galaxies in Virgo Cluster

Fig. 1.-Velocity histogram for the Virgo Cluster. Notice the obvious background group at $\sim 4000 \mathrm{~km} \mathrm{~s}^{-1}$.

Virial theorem
 (galaxies)

M-sigma relation

Velocity dispersion

Central temperature of stars

Mass－luminosity relation of the main sequence stars

Star with M＝ 10 Msun
＝＞L～104 Lsun
＝＞Lifetime
～1／103 of the Sun
～ 10^{10} yr（100億年）／10³
～ 10^{7} yr（1000万年）

More massive stars
have shorter lifetime

Lecture Note by Pols

1a. H-burning (pp chain)

$$
\begin{aligned}
& { }^{1} \mathrm{H}+{ }^{1} \mathrm{H} \rightarrow{ }^{2} \mathrm{H}+\mathrm{e}^{+}+v \\
& { }^{2} \mathrm{H}+{ }^{1} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\gamma
\end{aligned}
$$

${ }^{3} \mathrm{He}+{ }^{3} \mathrm{He} \rightarrow{ }^{4} \mathrm{He}+2{ }^{1} \mathrm{H}$

```
pp1
```

$$
\begin{aligned}
& { }^{7} \mathrm{Be}+\mathrm{e}^{-} \rightarrow{ }^{7} \mathrm{Li}+v \\
& { }^{7} \mathrm{Li}+{ }^{1} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{7} \mathrm{Be}+{ }^{1} \mathrm{H} \rightarrow{ }^{8} \mathrm{~B}+\gamma \\
& { }^{8} \mathrm{~B} \rightarrow{ }^{8} \mathrm{Be}+\mathrm{e}^{+}+v \\
& { }^{8} \mathrm{Be} \rightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}
\end{aligned}
$$

Energy production rate (per gram) $q^{\sim} \rho^{4}$

$\mathrm{T}^{\sim} 4 \times 10^{6} \mathrm{~K}$

Textbook by Pols

1b. H burning (CNO cycle) Eproduction rate q $\sim \rho^{\mathrm{T}}{ }^{16}$

$\mathrm{T}^{\sim} 1.5 \times 10^{7} \mathrm{~K}$

$$
\begin{aligned}
{ }^{12} \mathrm{C}+{ }^{1} \mathrm{H} & \rightarrow{ }^{13} \mathrm{~N}+\gamma \\
{ }^{13} \mathrm{~N} & \rightarrow{ }^{13} \mathrm{C}+\mathrm{e}^{+}+v \\
{ }^{13} \mathrm{C}+{ }^{14} \mathrm{H} & \rightarrow{ }^{14} \mathrm{~N}+\gamma \\
\mathrm{N}+{ }^{1} \mathrm{H} & \rightarrow{ }^{15} \mathrm{O}+\gamma \\
{ }^{15} \mathrm{O} & \rightarrow{ }^{15} \mathrm{~N}+\mathrm{e}^{+}+v \\
{ }^{15} \mathrm{~N}+{ }^{1} \mathrm{H} & \rightarrow{ }^{12} \mathrm{C}+{ }^{4} \mathrm{He} \\
& \rightarrow{ }^{16} \mathrm{O}+\gamma \\
{ }^{16} \mathrm{O}+{ }^{1} \mathrm{H} & \rightarrow{ }^{17} \mathrm{~F}+\gamma \\
{ }^{17} \mathrm{~F} & \rightarrow{ }^{17} \mathrm{O}+\mathrm{e}^{+}+v \\
{ }^{17} \mathrm{O}+{ }^{1} \mathrm{H} & \rightarrow{ }^{14} \mathrm{~N}+{ }^{4} \mathrm{He}
\end{aligned}
$$

Textbook by Prialnik

