Section 3. Stellar structure and properties (II)
3.1 Luminosity of the stars
3.2 Opacities in the stars

Let's understand these questions with the words of physics

- Why are stars so luminous?
- Why do stars show $L \sim M^{4}$?
- Why do stars evolve?
- Why does the destiny of stars depend on the mass?
- Why do some stars explode?
- Why don't normal star explode?
- Why does stellar core collapses?
- Why is the energy of supernova so huge?

Hertzsprung-Russel diagram

Luminosity

Temperature (K)

http://astronomy.nmsu.edu/geas/lectures/lecture23/slide04.html

Mass - radius relation for the main sequence

Outcome of the central property of the star

Lecture Note by Pols

Mass－luminosity relation of the main sequence stars

Star with M＝ 10 Msun
＝＞L～104 Lsun
＝＞Lifetime
～1／103 of the Sun
～ 10^{10} yr（100億年）／10³
～ 10^{7} yr（1000万年）

More massive stars
have shorter lifetime

Lecture Note by Pols

Why do stars show $\mathrm{L}^{\sim} \mathrm{M}^{4}$?
 Why do more massive stars have higher temperature?

Opacity inside the stars

Lecture Note by Pols

Bound-free opacity

Ionization edge

Assignment 1

Derive that the dependence of free－free opacity in stellar interior can be approximated as $\mathrm{k} \propto \mathrm{\rho}^{-3.5}$

Hint：In equilibrium，the rate for free－free absorption matches with that of free－free emission（thermal bremsstrahlung），i．e． $\mathrm{j}_{v}=\alpha_{v} \mathrm{~B}_{\mathrm{v}}(\mathrm{T})$ ＊Kirchhoff＇s law

レか゚ート課題1

恒星内部における自由－自由吸収の密度•温度依存性が近似的に次のように表せられることを示せ $\mathrm{k} \propto \mathrm{\rho}^{\top} 3.5$

ヒント：平衡状態では自由－自由吸収のrateと自由－自由放射（墊的制動放射）のrate はつり合う $\mathrm{j}_{v}=\alpha_{v} B_{v}(T)$
＊キルヒホッフの法則

Hertzsprung-Russel diagram

Blackbody radiation

Stellar spectrum

Type	M (Msun)
O	$20-60$
B	$3-18$
A	$2-3$
F	$1.1-1.6$
G	$0.9-1.05$
K	$0.6-0.8$
M	$0.08-0.5$

http://www.astronomy.ohio-state.edu/~pogge/Ast162/Unit1/SpTypes/index.html

Applications to galaxy studies

Spiral galaxy

- Star forming
- More "young" stars
- More massive stars
- Blue (high T radiation)

Elliptical galaxy

ESO 325-G004

> (C) NASA, ESA

- No star formation
- Old stars
- Less massive stars
- Red (low T radiation)

Spectral models for galaxies

Summary: Stellar structure and properties (I)

- Opacities in the stars
- Thomson scattering
- free-free and bound-free absorption
- Luminosity of the stars
- L ~ E/t $\mathrm{t}_{\text {esc }}$, where $\mathrm{t}_{\text {esc }} \sim(\mathrm{R} / \mathrm{c}) \tau$ (<== $\tau=\mathrm{k} \rho \mathrm{R}$)
- L~M3 ${ }^{3-5}$
- Stellar properties
- More massive stars have
- Higher luminosity L ~ M ${ }^{4}$ (shorter lifetime $\mathrm{t}^{\sim} \mathrm{M}^{-3}$)
- Higher temperature Teff ~ M ${ }^{0.5}$
- Foundation to determine the galaxy spectra

Thermodynamics

Classical
mechanics

Electromagnetism

Statistical mechanics

Astrophysics

Hydrodynamics

Quantum mechanics

Relativity

Nuclear physics

