Section 3. Stellar structure and properties (II)

3.1 Luminosity of the stars

3.2 Opacities in the stars

Let's understand these questions with the words of physics

- Why are stars so luminous?
- Why do stars show L ~ M4?
- Why do stars evolve?
- Why does the destiny of stars depend on the mass?
- Why do some stars explode?
- Why don't normal star explode?
- Why does stellar core collapses?
- Why is the energy of supernova so huge?

Hertzsprung-Russel diagram

Luminosity

Temperature (K)

http://astronomy.nmsu.edu/geas/lectures/lecture23/slide04.html

Mass - radius relation for the main sequence

Outcome of the central property of the star

Lecture Note by Pols

Mass - luminosity relation of the main sequence stars

Lecture Note by Pols

Why do stars show L~M4? Why do more massive stars have higher temperature?

Opacity inside the stars

Lecture Note by Pols

Bound-free opacity

Rybicki & Lightman

Assignment 1

Derive that the dependence of free-free opacity in stellar interior can be approximated as $\kappa\propto\rho T^{-3.5}$

Hint: In equilibrium, the rate for free-free absorption matches with that of free-free emission (thermal bremsstrahlung), i.e. $j_v = \alpha_v B_v(T)$ * Kirchhoff's law

レポート課題1

恒星内部における自由-自由吸収の密度・温度依存性が 近似的に次のように表せられることを示せ κ ∝ ρT^{-3.5}

ヒント:平衡状態では自由-自由吸収のrateと自由-自由放射 (熱的制動放射)のrate はつり合う j_v = α_v B_v(T) * キルヒホッフの法則

Hertzsprung-Russel diagram

Introduction to Astronomy (F. Shu)

Blackbody radiation

Stellar spectrum

Туре	M (Msun)
Ο	20-60
B	3-18
Α	2-3
F	1.1-1.6
G	0.9-1.05
K	0.6-0.8
Μ	0.08-0.5

http://www.astronomy.ohio-state.edu/~pogge/Ast162/Unit1/SpTypes/index.html

Applications to galaxy studies

Spiral galaxy

Elliptical galaxy

- Star forming
- More "young" stars
- More massive stars
- Blue (high T radiation)

- No star formation
- Old stars
- Less massive stars
- Red (low T radiation)

Spectral models for galaxies

Bruzual & Charlot 2003

Summary: Stellar structure and properties (I)

- Opacities in the stars
 - Thomson scattering
 - free-free and bound-free absorption
- Luminosity of the stars
 - L ~ E/t_{esc}, where $t_{esc} \sim (R/c) \tau$ (<== $\tau = \kappa \rho R$)
 - L ~ M³⁻⁵
- Stellar properties
 - More massive stars have
 Higher luminosity L ~ M⁴ (shorter lifetime t ~ M⁻³)
 Higher temperature Teff ~ M^{0.5}
 - Foundation to determine the galaxy spectra

Thermodynamics

Classical mechanics

Electromagnetism

Statistical mechanics

Astrophysics

Hydrodynamics

Quantum mechanics

Relativity

Nuclear physics