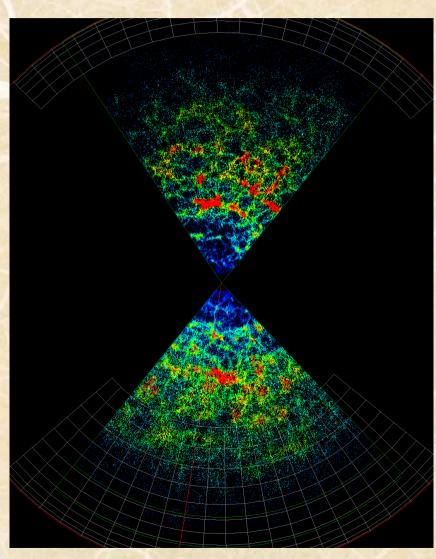
Detection Of The Baryon Acoustic Peak In The Large Scale Correlation Function Of SDSS Luminous Red Galaxies

Eisenstein et al 2005

2点相関関数からのバリオン音響ピークの発見と宇宙モデル

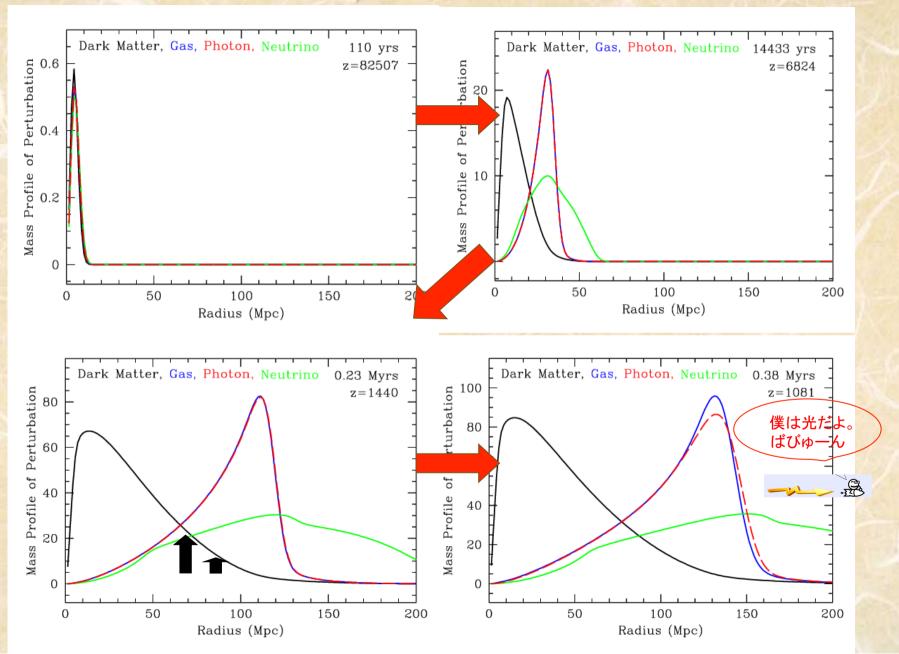

東北大学理学研究科天文学専攻 M1 望月 悠紀

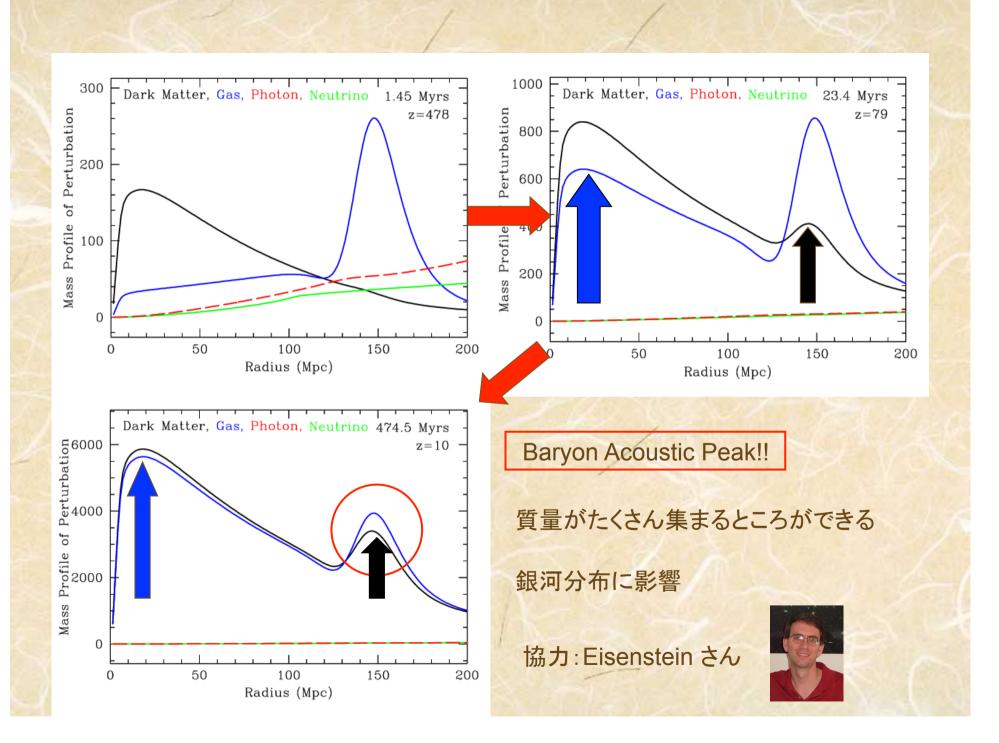
今日の話

- ・バリオン音響ピークとは
- ・バリオン音響ピークの観測
- ・バリオン音響ピークからわかること
- ・バリオン音響ピークの未来

バリオン音響ピークとは!?

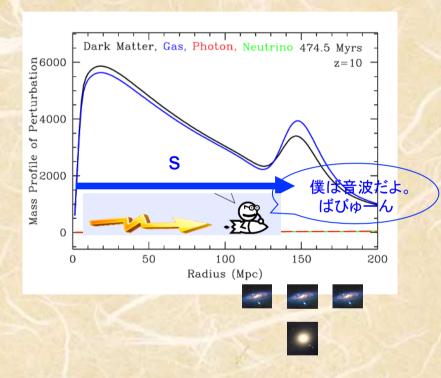
2dF 銀河赤方偏移サーベイ


- ・銀河がたくさん
- 普通の銀河分布に見えるが......
- 宇宙論は、この銀河分布に とんでもない特徴があることを予言する。


バリオン音響ピーク

100~150Mpcのスケー ルで銀河の個数がわずか に増加。

どうしてそんなことが?インフレーション後からの宇宙を考える。


各スケールにおける質量プロファイル

バリオン音響ピークを定量的に観測したい!

● どのような観測をすればいいのか??

ピークには、重い、つまり明るい楕円 銀河が集まってくるだろう。

―>ピークの特徴的な形を見たいから、明るくて赤い銀河の集まり具合を観測!

集まり具合を見るためには、できるだけ 多くの銀河の配置を、統計的に調べる 必要がある!

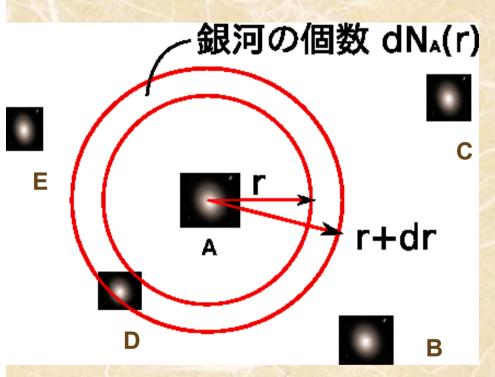
—>Large Scaleを観測

...集まり...具合??

銀河の集まり具合?->相関関数 ξ

-2点相関関数 $\xi(r)$?

$$\vec{x}_1 \times \vec{r} \times \vec{x}_2$$

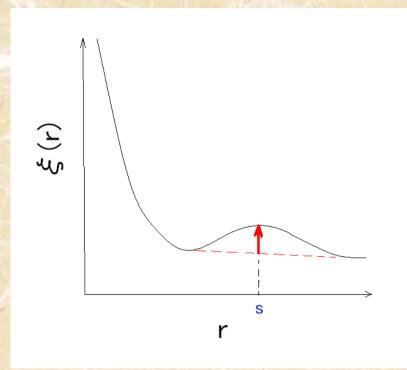

- $P(\vec{x}_1, \vec{x}_2)d^3x_1d^3x_2 = \bar{n}^2(1 + \xi(r))d^3x_1d^3x_2$
- ・ 距離 r の銀河の対の数が完全なランダム分布よりどれく らい多いかを表す。
- 例: $\xi(r) = 0$ —>銀河の集まりはランダム分布 $\xi(r) > 0$ —>銀河の集まりはランダム分布より多い $\xi(r) < 0$

―>銀河の集まりはランダム分布より少ない

 $\xi(r)$

- ⇒いろんな r に対して、相関関数 を計算。
- ⇒銀河はどのような集まり方をするかが見えてくる!

2点相関関数 ξ (r) の計算

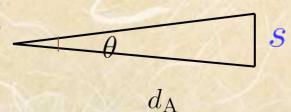

銀河の個数 dN₄(r) 2点相関関数の計算方法

- ・ ある銀河Aに着目し、Aからの距離がrと $r+\mathrm{d}r$ の間にある銀河の数 N_{A} を数える。
- ・ 他の銀河B、C…に対して も同様に繰り返し、平均 値 dN を計算する。
- · 関係式

$$\overline{dN} = 4\pi \bar{n}r^2 dr (1 + \xi(r))$$

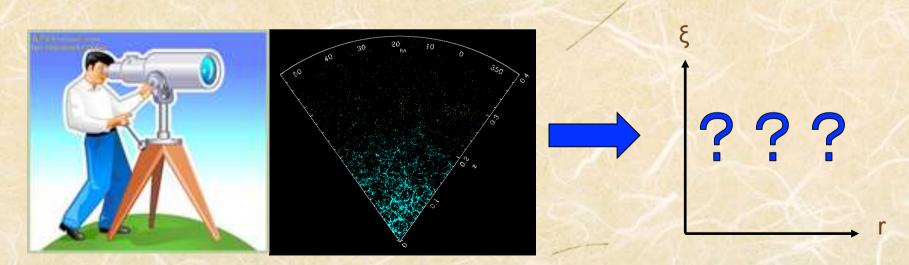
から、各r に対する $\xi(r)$ が求まる。

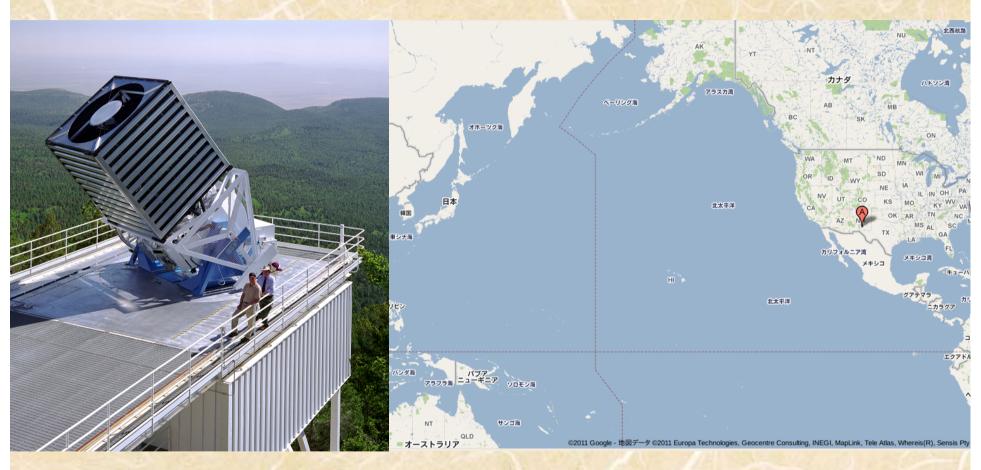
バリオン音響ピークを観測して何が嬉しいか



- 重力不安定性による線形 理論の検証
- 宇宙論パラメータの推定
 - ・音響ピークの盛り上がり具 合一> $\Omega_m h^2$
 - ー>音響スケールsがわかる
 - ->角径距離 d_A がわかる。

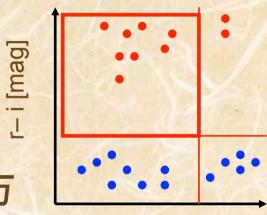
$$s \sim \frac{44.5 \ln(9.83/\Omega_{\rm m}h^2)}{\sqrt{1+10(\Omega_{\rm b}h^2)^{3/4}}} \quad {
m Mpc} \quad d_{
m A} = \frac{c}{H_0(1+z)\sqrt{|\Omega_{
m K}|}} \left\{ \begin{array}{l} \sinh(\sqrt{\Omega_{
m K}}\chi(z)) & \Omega_{
m K} > 0 \\ \sin(\sqrt{-\Omega_{
m K}}\chi(z)) & \Omega_{
m K} < 0 \end{array} \right.$$


 $-> \Omega_{\rm K}, \ \Omega_{\Lambda}, \ H_0, \ w$

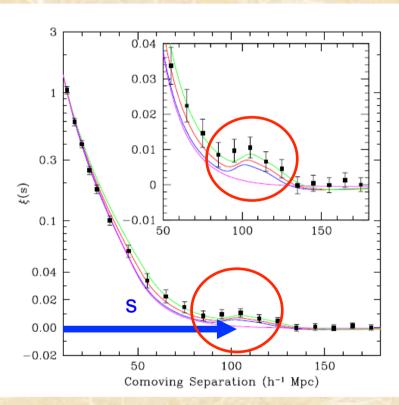


観測

- バリオン音響ピーク発見のため......
 - できるだけ広いスケールで、
 - できるだけ多くの、明るくて赤い銀河の位置を観測し、
 - 2点相関関数のグラフを作成せよ!!


Sloan Digital Sky Survey

Apache Point Observatory 口径2.5m ドームなし 満月30個分の視野 一度に640個の天体の分光が可能


Data

- Luminous Red Galaxies 46748個の分布
- ●赤方偏移 0.16 < z < 0.47
- ●観測領域 3816平方度
- 体積 $0.72 \ h^{-3} \mathrm{Gpc}^3$
- Luminous Red Galaxies の選び方
 - まず、SDSS Main Sample で r < 17.77
 - その中から、color cut!! G, r, I band
 - ※ K correction, 銀河進化を z = 0.3 に焼き直す

r [mag]

観測から求まった2点相関関数は?

$$(\Omega_{\rm m}h^2, \Omega_{\rm b}h^2) = (0.12, 0.024)$$

$$(\Omega_{\rm m}h^2, \Omega_{\rm b}h^2) = (0.13, 0.024)$$

$$(\Omega_{\rm m}h^2, \Omega_{\rm b}h^2) = (0.14, 0.024)$$

$$(\Omega_{\rm m}h^2, \Omega_{\rm b}h^2) = (0.105, 0.0)$$

- ・ バリオン音響ピークの 検出に成功!!
- 宇宙論パラメータ線形理論と観測結果を比較

$$\Omega_{\rm m}h^2 = 0.130 \left(\frac{n}{0.98}\right)^{1.2} \pm 0.011$$

$$\Omega_{\rm m} = 0.273 + 0.123(1 + w_0) + 0.137\Omega_{\rm K} \pm 0.025$$

$$s \sim rac{44.5 \ln(9.83/\Omega_{
m m}h^2)}{\sqrt{1+10(\Omega_{
m b}h^2)^{3/4}}} \sim 151$$
 Mpc $->$ 角形距離 $d_{
m A}$ がわかる

他の宇宙論パラメータは、例えば、WMAPや、SDSS Main の結果と組み合わせて求める!

WMAPとSDSS Main と組み合わせて見積もった宇宙論パラメータ

Joint Constraints on Cosmological Parameters including CMB data

	Constant w flat		w = -1 curved		w = -1 flat	
Parameter	WMAP+Main	+LRG	WMAP+Main	+LRG	WMAP+Main	+LRG
\overline{w}	-0.92 ± 0.30	-0.80 ± 0.18				
Ω_K			-0.045 ± 0.032	-0.010 ± 0.009	• • • •	
$\Omega_m h^2$	0.145 ± 0.014	0.135 ± 0.008	0.134 ± 0.012	0.136 ± 0.008	0.146 ± 0.009	0.142 ± 0.005
Ω_m	0.329 ± 0.074	0.326 ± 0.037	0.431 ± 0.096	0.306 ± 0.027	0.305 ± 0.042	0.298 ± 0.025
h	0.679 ± 0.100	0.648 ± 0.045	0.569 ± 0.082	0.669 ± 0.028	0.696 ± 0.033	0.692 ± 0.021
n	0.984 ± 0.033	0.983 ± 0.035	0.964 ± 0.032	0.973 ± 0.030	0.980 ± 0.031	0.963 ± 0.022

さらに、

バリオン音響ピークの存在から、構造の線形理論を確認。

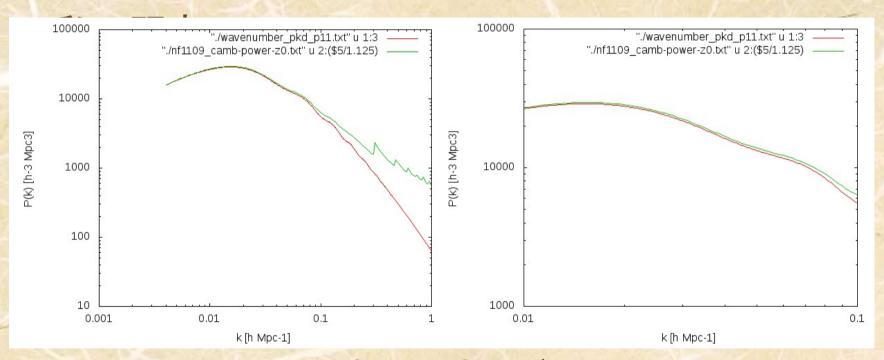
ダークマター、ダークエネルギーの存在を確認。

バリオン音響ピークは宇宙モデルを 決める有力な道具になった!

WMAP 5-year Cosmological Interpretation

TABLE 1 Summary of the cosmological parameters of $\Lambda \rm CDM$ model and the corresponding 68% intervals

Class	Parameter	$WMAP$ 5-year ML^a	<i>WMAF</i> ↓BAO,-SN ML	$WMAP$ 5-year Mean b	WMAI+BAO+SN Mean
Primary	$100\Omega_b h^2$	2.268	2.262	2.273 ± 0.062	$2.267^{+0.058}_{-0.059}$
	$\Omega_c h^2$	0.1081	0.1138	0.1099 ± 0.0062	0.1131 ± 0.0034
	Ω_{Λ}	0.751	0.723	0.742 ± 0.030	0.726 ± 0.015
	n_s	0.961	0.962	$0.963^{+0.014}_{-0.015}$	0.960 ± 0.013
	au	0.089	0.088	0.087 ± 0.017	0.084 ± 0.016
	$\Delta_{\mathcal{R}}^2(k_0^e)$	2.41×10^{-9}	2.46×10^{-9}	$(2.41 \pm 0.11) \times 10^{-9}$	$(2.445 \pm 0.096) \times 10^{-9}$
Derived	σ_8	0.787	0.817	0.796 ± 0.036	0.812 ± 0.026
	H_0	72.4 km/s/Mpc	70.2 km/s/Mpc	$71.9^{+2.6}_{-2.7}$ km/s/Mpc	$70.5 \pm 1.3 \text{ km/s/Mpc}$
	Ω_b	0.0432	0.0459	0.0441 ± 0.0030	0.0456 ± 0.0015
	Ω_c	0.206	0.231	0.214 ± 0.027	0.228 ± 0.013
	$\Omega_m h^2$	0.1308	0.1364	0.1326 ± 0.0063	$0.1358^{+0.0037}_{-0.0036}$
	$z_{ m reion}^f$	11.2	11.3	11.0 ± 1.4	10.9 ± 1.4
	$t_0{}^g$	13.69 Gyr	$13.72 \; \mathrm{Gyr}$	$13.69 \pm 0.13 \; \mathrm{Gyr}$	$13.72 \pm 0.12 \; \mathrm{Gyr}$


まとめ

- ・バリオン音響ピークのでき方をみた。
- ・バリオン音響ピークの観測に初成功!
- 宇宙論パラメータを見積もることができた。
- 構造形成の線形理論の検証ができた。
- ・バリオン音響ピークは、宇宙モデルを決定するのに強力なツールであることがわかった。

ちょつと待った!!

- 本当に理論曲線はあっているのか!?
 - 相関関数の理論モデルは線形理論を仮定していた。
 - ・でも、本当は、非線形の効果が効いてくるはず!(他にも銀河バイアスなどが効いてくる!)
- 精密な理論モデルを作るために、非線形効果を入れるべき。
- ―>宇宙論パラメータをさらに精度よく出すこと が期待できる

バリオン音響ピークの将来は?

これは、世界一正確な理論モデルになる!Ωm だけでなく、

ニュートリノの質量にさらなる制限をかけることできる!!

かもしれない。

終わる前に

1年間、雑誌会のお世話をしてくれた、

岡村さん、安達さん、馬渡くん、高山くん、 そして参加者の皆様、

本当にお疲れ様でした!!

ご清聴ありがとうございました!!