"THE CORE-CUSP PROBLEM IN COLD DARK MATTER HALOS AND SUPERNOVA FEEDBACK: EFFECTS OF MASS LOSS"

Ogiya & Mori 2011, arXiv1106.2864 (submitted to ApJ)

【アブスト】

銀河スケールで見たCDM理論にはいくつか観測との差異が生じており、その1つに「カスプ問題」がある。この問題を解決の1つに、SN feedbackによるmasslossによってカスプからコアに変化するという理論があるが、このmass-lossのtime scaleにどのくらい密度分布に影響及ぼすのかを調べた。すると、SN feedbackによるmass-lossは密度分布にほとんど影響を与えない事がわかった。よってカスプからコアへの変化はこの機構では説明出来ない。

【コール】

カスプ問題の解決示唆と力学的銀河進化の理解

【オリジナリティ】

mass-lossのtime scaleを考慮して、孤立系の矮小銀河に対するN体シミュレーションを行った。

【ロジック】

•DM halo
$$\rho_{\rm DM}(r) = \frac{\rho_0 R_{\rm DM}^3}{r^\alpha (r+R_{\rm DM})^{3-\alpha}} \quad \Phi_{\rm b}(r) = -\frac{GM_{\rm b}}{r+R_{\rm b}} \quad M_{\rm b} = M_{\rm b,tot}(1-t/T_{\rm out})$$

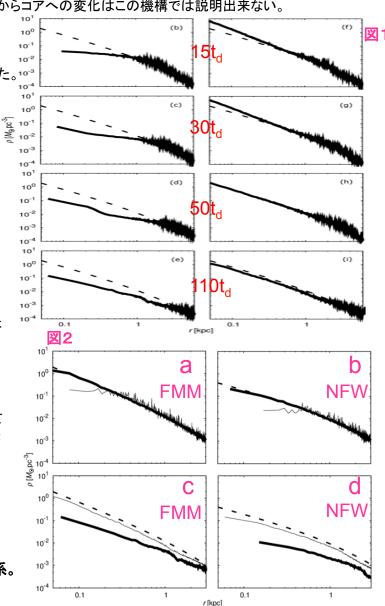
表1: simulation run。NFWは α =-1, FMMは α =-1.5。 T_{rel} は緩和時間で t_d はfree fall time

$^{\mathrm{ID}}$	DM halo	N	$T_{ m rel}$	Mass-loss (T_{out})	Fitted α
UP1	FMM	1,048,576	$495 \ t_{ m d}$	-	
$\mathbf{UP2}$	\mathbf{FMM}	16,384	$7.74 t_{ m d}$	_	
UP3	NFW	1,048,576	$148~t_{ m d}$	_	
UP4	NFW	16,384	$2.32~t_{ m d}$	_	
$\mathbf{ML1}$	\mathbf{FMM}	1,048,576	$495~t_{ m d}$	instantaneous	0.85
$\mathbf{ML2}$	\mathbf{FMM}	1,048,576	$495~t_{ m d}$	$1~t_{ m cl}$	1.20
ML3	\mathbf{FMM}	1,048,576	$495 t_{\rm d}$	$10 \ t_{\rm d}$	1.44
ML4	\mathbf{FMM}	1,048,576	$495~t_{ m d}$	$50 t_{\rm d}$	1.46
ML5	NFW	1,048,576	$148 t_{ m d}$	instantaneous	0.42
ML6	NFW	1,048,576	$148~t_{\rm d}^{\rm a}$	$50~t_{ m d}$	0.89

図1: FMM modelでの密度プロファイルの時間進化。左右)が瞬間的な(ゆっくりな) mass loss。 左4つではmass lossが起きると一時的にコア状になるが、時間が経つにつれて、カスプ状に戻る。ただし、初期のpower lowよりはshallowになる。

- ⇒密度プロファイルは一度コアになってもカスプに再生する。
- 右4つでは、密度プロファイルがほとんど変わらない。
- ⇒ゆっくりなmass lossは密度プロファイルにほとんど影響しない。

図2(a,b):mass lossを考慮しない場合の、粒子数の違いによる密度プロファイルの差異。thick solid がhigh-resolution、thin solidがlow-resolution。low-resolutionの方で密度プロファイルがコアになっていることが分かる。⇒2体緩和の効果でコアになっている。実際、緩和過程が力学時間より十分に長いので、自己重力による密度プロファイルの変化はあり得ない。


図2(c,d): mass loss後、平衡状態になった時の密度プロファイル。 thick solidが瞬間的、thin solidがゆっくりなmass loss。これに α をfittingしたのが表1。観測では α ~0.2-0.3

【コメント】

- •DFはエネルギーのみに依存→速度分散は等方。
- ・コアからカスプに戻る物理過程はよくわからない。

【感想】

- ▪球対称以外で行う必要あり。特に回転or azimuthalな速度分散によって潰れているような系。
- •core-to-cusp transitionがあるなら、どんな物理機構になるのか?

