UPPER LIMIT OF THE SPECTRUM OF COSMIC RAYS

服部研

M1

今回のテーマ

GZK限界(Greisen-Zatsepin-Kuzmin limit)

地球に届く50Mpc以上から来た5×10¹⁹eV以上の 宇宙線は地球には届かないという理論的な予想

本論文について

- 1964年にアーノ・ペンジアスとロバート・W・ウィルソン にCMBが発見され、ビッグバン宇宙論が信じられ始めた。
- 当時、宇宙年齢がわからないため、50Mpcという距離が宇宙空間に存在するのかどうかわからない。
- 宇宙線とCMB光子の反応時間とエネルギーの関係を導出しているし、試行錯誤している。

以後、最近の観測データなどを混じえつつ、話を進めていき ます。当時論文も無駄でないところは取り込んでとますが、 論文内容と逸脱しているところもあるかもしれないので、ご 了承できたらと思います。

宇宙線スペクトル分布

 $I_N(E) \approx 1.8 \times E^{-\alpha}$ nucleons/cm²/sec/str/Gev $\alpha = 2.7$ (below knee) $\alpha = 3.0$ (from knee to ankle) $\alpha = 2.8$ (above ankle)

・Our galaxyでブラックホールなどの高エネルギー 天体が存在しない場合、高エネルギー宇宙線は 磁場の加速よって生じる。

Ourgalaxyで宇宙線がいつまで、加速されるか は

ディスクの厚さ≤シンクロトロン半径 ディスクの厚さ~5kpcシンクロトロン半径 r_L

$$r_{L} = \frac{c}{\omega} = c / \frac{eB}{\gamma m_{p}c} = \frac{\gamma m_{p}c^{2}}{eB}$$
$$= \frac{\gamma m_{p}c^{2}}{\omega_{ce}m_{e}c^{2}} c \sim 1.05 \times 10^{-6} \gamma (pc/\mu G)$$
$$\geq 5 kpc(B/\mu G)^{-1}$$

 $\gamma \ge 5 \times 10^9$ $\gamma m_p c^2 \ge 4.5 \times 10^{18} (eV)$ 銀河系外起源 電子のサイクロトロン周波数 $\omega_{ce} \sim 17 (Hz/\mu G)$

$$r_{L} = \frac{c}{\omega} = c / \frac{eB}{\gamma m_{p}c} = \frac{\gamma m_{p}c^{2}}{eB}$$
$$= \frac{\gamma m_{p}c^{2}}{\omega_{ce}m_{e}c^{2}}c \sim 1.05 \times 10^{-6}\gamma(pc/\mu G)$$
$$\leq 1pc(B/\mu G)^{-1}$$

•

 $\gamma \leq 1 \times 10^{6}$ $\gamma m_{p}c^{2} \leq 9 \times 10^{14} (eV)$ SNR起源 電子のサイクロトロン周波数 $\omega_{ce} \sim 17 (Hz/\mu G)$

宇宙線スペクトル分布

 $I_N(E) \approx 1.8 \times E^{-\alpha}$ nucleons/cm²/sec/str/Gev $\alpha = 2.7$ (below knee) $\alpha = 3.0$ (from knee to ankle) $\alpha = 2.8$ (above ankle)

宇宙線とCMB光子との相互作用

宇宙線陽子静止系で観測したときCMB のエネルギーがπ中間子の静止質量エ ネルギーを超えていると、以下の反応 が起きる。

$$\gamma_{CMB} + p \rightarrow p^* \rightarrow p + \pi^0$$

$$\gamma_{CMB} + p \rightarrow p^* \rightarrow n + \pi^+$$

宇宙線(陽子)とCMB光子との相互作用が起 きるための宇宙線のエネルギー下限値

ローレンツ変換し、陽子の静止系へ $m_p c^2 + \gamma E_{CMB} \ge m_n c^2 + m_\pi c^2$

基本的な物理量 $m_{p}c^{2} \sim 938(MeV)$ $E_{CMB} \sim 2.82 \times k_B \times 2.725(K)$ 最も多い $\sim 6.62 \times 10^{-4} (eV)$ CMB粒子 $m_{\pi}c^2 \sim 139(MeV)$ のエネル 反応が起こるために陽子必要 なエネルギー $\gamma \geq 2 \times 10^{11}$ $\gamma m_p c^2 \ge 2 \times 10^{20} (eV)$

GZK CUT OFF

CMB光子中の宇宙線のMEAN FREE PATH $\sigma = 0.25(mb) = 2.5 \times 10^{-28}(cm^2)$ 観測結果、素粒子物理学(武田 暁、宮沢弘成著) 1ccに含まれるCMB光子の数 $n = 411(cm^{-3})$ $\lambda = \frac{1}{1} = 3.15(Mpc)$ 実際は50(Mpc)

GZK限界のHIRES,AGASAにおける結果 (信頼度68%)

FIG. 3 (color online). The cosmic-ray energy spectrum measured by the HiRes detectors operating in monocular mode. The spectrum of the HiRes-I and HiRes-II detectors are shown. The highest two energy bins for each detector are empty, with the 68% confidence level bounds shown. The spectrum of the AGASA experiment is also shown [7,8].

First Observation of the Greisen-Zatsepin-Kuzmin Suppression arXiv:astro-ph/0703099v2 15 Feb 2008

フラックス微分とエネルギーの関係

arXiv:0806.4302v1 [astro-ph] 26 Jun 2008

Observation of the suppression of the flux of cosmic rays above 4 imes 1019 eV

HIRESの捉えたUHECRSの分布と AGNとの比較

Figure 5: Distribution of arrival direction of stereo HiRes events versus nearby galaxies in the Veron catalogue. Black: AGN's, Blue: HiRes data, Red: Correlated data.

Final Results from the High Resolution Fly's Eye (HiRes) Experiment P. Sokolsky for the HiRes Collaboration University of Utah, Salt Lake City, Utah, 84112, USA

観測的にGZK CUT OFFは本当に存在 するのか?

3×10¹⁹(*eV*)付近でHiResの結果はGZKに 従っているが、AGASAの結果にはCUT OFF が見られない。

どちらが、正しいのか。 テレスコープアレイ(TA)の結果待ち。 (2008~)

検出器の性能

Experiment	status	km ² sr yr @ 50 EeV	# events	
			$> 10 { m ~EeV}$	$> 50 { m ~EeV}$
Haverah Park	1962-1987	~ 245	106	10
Yakutsk	1974-present	~ 900	171	6
AGASA	1993-2005	1620	886	46
HiRes-I mono	1997-2006	~ 4500	561	31
HiRes-II mono	1999-2006	~ 1500	179	12
HiRes stereo	1999-2006	~ 2400	270	11
Auger	2004-present	~ 7000	1644	38
TA	2007-present	860×yrs		

ここから先はAPPENDIX

Measurement of the energy spectrum of cosmic rays above 1018 eV using the Pierre Auger Observatory The Pierre Auger Collaborationa *aObservatorio Pierre Auger, Av. San Martin Norte 304, 5613 Malarg ⁴ue, Argentina*

DISTRIBUTION OF SHOWER MAXIMA, XMAX

- nuclear primaries of mass the number of primary nucleons *A*
- The coefficients α and β depend on the

nature of hadronic interactions, most notably on the multiplicity, elasticity and cross-section in ultrahigh energy collisions of hadrons with air

SHOWER IN X (G/CM²)

- Make quality cuts
 - \Rightarrow well defined showers
 - Standard spectrum cuts
 - Track length > 200g/cm²
 - □ ψ < 110°
 - Extra Bracketing -50g/cm²
 - Cerenkov Fraction < 0.35
- Locally Fit Shower Profiles Near N_{max}

$$N_{max}$$
 and X_n
 $n(X) = \frac{N}{N_{max}}$

 $\frac{3X}{X + 2X_{max}}$

• Normalize:

SHOWER IN S (AGE)

• Gaisser-Hillas

$$n(s) = \left(1 - \frac{(1-s)}{(3-s)} \frac{3T_{max}}{(T_{max} - T_o)}\right)^{T_{max} - T_o} e^{(3T_{max}\frac{1-s}{3-s})}$$

$$T_m = \frac{X_{max}}{\lambda} \qquad \qquad T_o = \frac{X_o}{\lambda}$$

$$f(s) = exp\left(\frac{-1}{2\sigma^2}(s-1)^2\right)$$

- $\Box \sigma$ Shower Width
- Symmetric about s=1

XMAXの幅

HIRESのアパーチャーとエネルギーの関係

FIG. 2 (color online). The apertures (defined as the product of collection area and solid angle) of the HiRes-I and HiRes-II detectors operating in monocular mode.

First Observation of the Greisen-Zatsepin-Kuzmin Suppression arXiv:astro-ph/0703099v2 15 Feb 2008

COMPOSITION

• Elongation rate used to measure composition

$$X_{max} = \lambda \frac{\log \left(E_0 / E_C \right)}{\log 2} \propto \log(E_0)$$

- Compare to pure Monte Carlo
 - Proton and Iron
 - Analyzed using full detector simulation and reconstruction
- Consistent with light composition
 - MIA result shows changing composition

AGASA Results, Kenji Shinozaki, Max-Planck-Institut f•ur Physik, 80805 M•unchen, Germanyfor AGASA Collaboration October 18, 2004

Space angle distribution of events

- Significant peak @ 0 degree
 - implying presence of compact EHECR sources