AGN jets in the EHT era @Tohoku U., 20-22 Jan 2020

The radio-loud fraction of low-luminosity HSC quasars at z~6

Kianhong Lee

University of Tokyo

In collaboration with

Kotaro Kohno, Yoshiki Matsuoka, Tohru Nagao, Michael Strauss, Bunyo Hatsukade, Hideki Umehata, Takuma Izumi, Malte Schramm, Yoshiki Toba, Takuji Yamashita, Chien-Hsiu Lee, Masafusa Onoue, Kazushi Iwasawa, Masatoshi Imanishi, Toshihiro Kawaguchi

Quasars' radio properties

- Quasi-stellar 'radio' source
- Only 10-20% (e.g., Ivezić+02) show strong radio emission: 'Radio-loud'
- Hints on SMBHs' properties (e.g., mass, spin..)

The Kerr solution of GR— Spinning black hole

- Frame-dragging effect
- Static limit

 → all matter and light is forced to
 irresistibly rotate around the black hole
- Region within the static limit
 → ergosphere
- Rotational energy can be extracted from the ergosphere by magnetic fields (Blandford & Znajek 77)

© Michael Cramer Andersen 'Kerr's rotating Black Holes'

Radio-loudness: two definitions

- I. Radio luminosity, e.g., $logL_{5G} = 25.5$ (W/Hz) (Jiang+07)
 - Just based on a critical radio luminosity for radio-loud/quiet
- 2. Radio-to-optical flux density ratio, $R = \frac{f_{5GHz}}{f_{4400\text{\AA}}}$ (Kellermann+89)
 - Extrapolating from monochromatic radio and optical data
 - Assume a power-law spectral energy distribution $\ f_{\nu} \propto \nu^{\alpha}$ in both optical and radio regions
 - Assumption of spectral indices: Radio: -0.75 Optical: -0.5 (Wang+07; Bañados+15)
 - When R > 10, classified as radio-loud

Radio-loud fraction evolution

• Dependences of the RLF on redshift and luminosity exist?

— Jiang+07: RLF 🔪 when <u>redshift</u> and <u>luminosity</u>

• On the other hand, the mean radio-loudness...

— White+07: Mean radio-loudness 🖊 when <u>redshift 🎾</u> and <u>luminosity</u>

- For a more evidential result, High-z study is important! but..
 - A high-z study (z>5.5, Bañados+15) shows a similar result with local studies, suggesting that there's no such evolution.
 - Probably they are biased by the luminous sample at high-z?
- We need high-z low-luminosity samples!

Introduction

Radio-loud fraction evolution

Radio-loud fraction evolution

• Dependences of the RLF on redshift and luminosity exist?

— Jiang+07: RLF 🔪 when <u>redshift</u> and <u>luminosity</u>

• On the other hand, the mean radio-loudness...

— White+07: Mean radio-loudness 🖊 when <u>redshift</u> nd <u>luminosity</u>

- For a more evidential result, High-z study is important! but..
 - A high-z study (z>5.5, Bañados+15) shows a similar result with local studies, suggesting that there's no such evolution.
 - Probably they are biased by the luminous sample at high-z?
- We need high-z low-luminosity samples!

Introduction

Radio-loud fraction evolution

Radio-loud fraction evolution

• Dependences of the RLF on redshift and luminosity exist?

— Jiang+07: RLF 🔪 when <u>redshift</u> and <u>luminosity</u>

• On the other hand, the mean radio-loudness...

— White+07: Mean radio-loudness 🖊 when <u>redshift 🎾</u> and <u>luminosity</u>

- For a more evidential result, High-z study is important! but..
 - A high-z study (z>5.5, Bañados+15) shows a similar result with local studies, suggesting that there's no such evolution.
 - Probably they are biased by the luminous sample at high-z?
- We need high-z low-luminosity samples!

Subaru/HSC-selected quasars

Data

- Discovered with the Hyper Suprime-Cam Subaru Strategic Program survey (Aihara+18)
- HSC: a wide-field image camera mounted on Subaru telescope

				Survey	Filters					
Layer	Area	Filters	<i>i</i> -band depth	SDSS ^a	u	g	r	i	z	
	(deg^2)		(mag)	depth $(mag)^e$	22.3	23.3	23.1	22.3	20.8	
Wide	1400	$g \ r \ i \ z \ y$	25.9	Pan-STARRS1 ^b		g	r	i	z	y
Deep	26	g r i z y + 3NBs	26.8	depth $(mag)^{e}$		23.3	23.2	23.1	22.3	21.4
UltraDeep	3.5	g r i z y + 3NBs	27.4	DES ^c		g	r	i	z	\overline{Y}
				depth $(mag)^c$		25.2	25.1	24.3	23.7	22.5
				HSC-SSP Wided		g	r	i	z	y
				depth $(mag)^e$		26.5	26.1	25.9	25.1	24.4
• High-z (z~4-6)				 ^a York et al. (2000) ^b Chambers et al. (2016) ^c Dark Energy Survey Collaboration et al. (2016) 						
 Low-luminosity (M₁₄₅₀ >-26) 				^d Aihara et al. (2018) ^e 5σ detection limit						

Subaru/HSC-selected quasars

Data

- Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) (Matsuoka+16, 18ab, 19b) — 93, over 900 deg²
- Color-selected and identified with spectroscopic follow-up observations

11/15

12 /15

Radio data — VLA-FIRST and JVLA follow-up

Archive

VLA-FIRST survey (150 µJy; Becker+95)

Data

- Stripe 82 (50 µJy; Hodge+11)
- Observations
 - Karl G. Jansky Very Large Array (JVLA) <u>18A-316</u>: March - June, 2018 <u>19A-317</u>: August - October, 2019
 - <u>23</u> HSC quasars observed
 - <u>Frequency</u>: I.4 GHz (~20 cm)
 - <u>Angular resolution</u>: ~2"
 - Sensitivity (1σ) : ~10-50 µJy

© David Akoubian

Result

The radio-loud fraction

A great fraction of SMBHs have high spin in luminous quasars? The formation of SMBHs in the early universe makes them spin-up?

15 /15

- We cross-matched z~6 HSC quasars with
 - archival radio survey (FIRST; σ = 150 µJy @1.4 GHz) and conducted
 - new JVLA observations (23 sources; 10-50 µJy @1.4 GHz)
- None of 93 HSC quasars are classified as radio-loud.
- The radio-loud fraction of HSC quasars at ~6: - 0-97% (not constraining) using R = $\frac{f_{5\rm GHz}}{f_{4400\rm \AA}}$ = 10 as threshold
 - 0-5.9% using the critical radio luminosity $\log L_{5G}$ = 25.5 (W/Hz) as threshold
- The radio-loud fraction of HSC quasars is lower than that of luminous quasars.