Acceleration \& Collimation Zone of FSRQ 1928+738

Kunwoo Lee, Jongho Park, Sascha Trippe, Nakamura Masanori

Seoul National University

Jets from Flat Spectrum Radio Quasars

- Flat Spectrum Radio Quasar (Top View)
- Relativistic jet (v ~ c)
- Narrow angle $\left(\theta_{o p}<1\right)$
- Massive Black Hole

$$
\left(10^{8}-10^{9} M_{\odot}\right)
$$

- High accretion rate

$$
\left(M_{B H} / M_{E d d}=0.1 \sim 0.5\right)
$$

- Mostly in distant universe

Basic information of FSRQ 1928+738

MOJAVE 15 GHz Image

- Common Name : 4C +73.18
- Radio Brightness $S_{43}>3 \mathrm{Jy}$
- High Dec (+73)
- \rightarrow Ease of observation
- $\mathrm{z} \sim 0.3, M_{\mathrm{BH}} \sim 10^{8.57} M_{\circ}, \theta_{v} \sim 12.8$
$\rightarrow 1$ mas $\sim 5 \times 10^{5} R_{\text {s }}$
\checkmark Good target to explore inner jet

Nakamura-san's talk

KaVA Monitoring of FSRQ 1928+738

KaVA 43 GHz Image

- KaVA Q band 43 GHz
- 2017 Feb ~ 2019 Jan (~2yr)
- Monthly interval
- Main Goals
- (1) Exploring its jet kinematics
- (2) its variability

KaVA Monitoring of FSRQ 1928+738

(1) Jet kinematics \rightarrow Proper motion analysis
(2) Exploring its variability \rightarrow Light curve analysis

KaVA Monitoring of FSRQ 1928+738

$$
\delta_{\text {var }}=\frac{s D_{L}}{c \Delta t_{\text {decay }}(1+z)} \quad \text { Jorstad et al. }(05,17)
$$

Jet Kinematics of FSRQ 1928+738

- Jet kinematics
: $\beta_{\text {app }}$ increases
as a function of distance

- $\beta \& \theta$: coupled
- Real acceleration? or projection effect?

Jet Kinematics of FSRQ 1928+738

- Observed Parameters

- $\beta_{\text {app }}$ \& δ increase as a function of distance
- Due to Real Acceleration!
- Intrinsic Parameters
- Real Acceleration
\rightarrow Acceleration Zone
- $\theta_{v} \sim 12.8^{\circ}$ Hovatta et al. 2009
- No significant jet bending !

Jet Kinematics of FSRQ 1928+738

- $\Gamma \times \alpha=[0.15,0.16,0.25,0.25]$
Γ : Lorentz factor, α : half opening angle (de - projected)
- $\Gamma \times \alpha=0.2$ in average
: Acceleration \& Collimation
\rightarrow Causal Connected
Jorstad+ $(05,17)$, Pushkarev+ $(09,17)$

Jet Kinematics of FSRQ 1928+738

Cross-Check

- More knotty structure on 15 GHz
- Both data shows acceleration
- Acceleration Zone (0 ~ 6 mas region)

Q1) Acceleration keep going?
Q2) Max of $\beta_{\text {app }}$?
Q3) Collimation Zone ?

Jet Kinematics of FSRQ 1928+738

Cross-Check

- Jet Kinematics (~20 mas)
- Acceleration \rightarrow Deceleration
- Transition @~ 5 mas
\checkmark Q1) Acceleration keep going?
\checkmark Q2) Max of $\beta_{\text {app }}$?
x Q3) Collimation Zone?

Jet Kinematics of FSRQ 1928+738

Cross-Check

- Jet Kinematics (~20 mas)
- Acceleration \rightarrow Deceleration
- Transition @~ 5 mas
\checkmark Q1) Acceleration keep going?
\checkmark Q2) Max of $\beta_{\text {app }}$?
x Q3) Collimation Zone?

Jet Kinematics of FSRQ 1928+738

Cross-Check

- Jet Kinematics (~20 mas)
- Acceleration \rightarrow Deceleration
- Transition @~5 mas
\checkmark Q1) Acceleration keep going?
\checkmark Q2) Max of $\beta_{\text {app }}$?
x Q3) Collimation Zone?

Jet Collimation of FSRQ 1928+738

Jet Collimation of FSRQ 1928+738

Jet Collimation of FSRQ 1928+738

Low-freq data

- Extended Jet structure
(~ 40 mas)
- $W(z) \propto z^{a}, a \sim 1.142$
- Jet collimation
: conical (/ hyperbolic) jet
(free expansion)

Jet Collimation of FSRQ 1928+738

Broken - Power Law Fit

- $W(z) \propto z^{a 1}(z<b)$
- $W(z) \propto z^{a 2}(z \geq b)$
- b : transition site
\rightarrow parabolic to conical transition
(Jet Geometry)

Acceleration \& Collimation of FSRQ 1928+738

- Jet Geometry
- Jet Kinematics
- Collimation Zone ~ Acceleration Zone \rightarrow ACZ
- Jet Kinematics : acceleration \rightarrow deceleration
- Jet Geometry : parabolic \rightarrow conical
(= Jet Collimation Break)
- Both transition @ 5 mas

Jet Collimation Break @ Sphere Of Influence

Jet axial distance (de-projected) [R_{S}]

Jet axial distance (de-projected) $\left[R_{s}\right]$

- Jet Geometry
- Jet Kinematics
- $M_{\text {BH }} \sim 10^{8.57} M_{\circ}, \theta_{v} \sim 12.8^{\circ} \quad$ Park 2017, Hovatta+ 09
- $r_{\text {s. O.I }} \equiv G M_{\text {BH }} / \sigma_{\text {star }}^{2}$
- $\sigma_{\text {star }} \sim \sigma_{[\text {oIII }]}=128-166 \mathrm{~km} / \mathrm{s}$

Bian \& Zhao 2004
$\rightarrow r_{\text {S. O. } I} \sim 1.6-2.8 \times 10^{6} r_{s},\left(r_{J C B}=\sim 2.7 \times 10^{6} r_{s}\right)$
: coincident !!

Jet Collimation Break @ Sphere Of Influence

- Jet Geometry

- Jet Kinematics

JCB site

- Collimation Zone ~ Acceleration Zone \rightarrow ACZ
- JCB (\& Kinematics transition) @ S.O.I
- ACZ : Inside S.O.I of the SMBH
- JCB site (End of ACZ) : resembles HST-1 \& S region ?

JCB site : Brightness Enhanced

JCB site : Limb-Brightening

JCB site : Limb-Brightening

(1) Enhanced Intensity
(2) Limb-brightening
\rightarrow Re-collimation shock

ACZ \& JCB : Conclusion

- Jet Geometry

- Jet Kinematics

JCB site

- Collimation Zone ~ Acceleration Zone \rightarrow ACZ
- JCB (\& Kinematics transition) @ S.O.I
- ACZ : Inside S.O.I of the SMBH
- A re-collimation shock candidate @ S.O.I
: pressure imbalance likewise M87, 1H0323+342

Summary

- We discovered (spatially resolved) the ACZ in the jet of FSRQ.
- showing both acceleration \& collimation
- ACZ : inside the S.O.I of the SMBH
- We discovered the two transitions @ S.O.I
- Acceleration \rightarrow Deceleration in jet kinematics
- Parabolic \rightarrow Conical in jet geometry
- We detected re-collimation shock (candidate) @ S.O.I
- Locally enhanced brightness
- Limb-brightening feature

Deeper understanding the ACZ ?

Observational Strategy
1 mas $\sim 5 \times 10^{5} R_{s}$

- GMVA / Space - VLBI
: (in prep)
- Polarimetry
: (in prep)
- Multi-wavelength light curves
: (collaterally on-going)

MWL analysis of FSRQ 1928+738

- Long-term perspective (10 yrs \uparrow)
- @ 225, 37, 15 GHz
- large flares
- flares with yr time scale
\rightarrow Similar Global Trend
- Short-term perspective (~2 yrs)
- @ 225, 43, 37, 15 GHz
- 2 (or 1) small flares
- flares with month time scale

MWL analysis of FSRQ 1928+738

- Short-term perspective (~2 yrs)
- @ 225, 43, 37, 15 GHz
- 2 (or 1) small flares
- flares with month time scale
: Well-constrained Event showing $\Delta t_{\text {lag }}$

MWL analysis of FSRQ 1928+738

Thank you

