Preliminary Three dimensional modeling of FR-II jets using two-temperature MHD simulation

Ohmura Takumi, Machida Mami (Kyushu Univ.) AGN jet workshop 2020 in Tohoku Univ. ,2020/01/20-22

 Introduction - FR II Radio Galaxies -Most of FR II sources have powerful jets

 Edge brightened sources (hotspot, Radio-lobe)
 Synchrotron radiation from relativistic electrons in the magnetic fields of lobes.

- Diffuse thermal X-ray emitted like a rugby ball.

Blue:X-ray, Red: Radio

1. Introduction - FR II Radio Galaxies -

Classical theory of FR II jets (e.g., Scheuer 1974)

 Jets convert kinetic energy into particles and internal energy at the terminal shocks = Hotspots

- The hot plasma through the hotspots back towards to the nucleus, spreading out = Radio-lobe (Cocoon)

- The layer of shocked plasma emitted diffuse X-ray.

Introduction - Two-temperature plasma X-ray cavity in the galaxy cluster

 > Jet plasma is hotter and lighter than ICM
 [n_{ICM} ~ 10⁻² - 10⁻³ cm⁻³, T_{ICM} ~ 10⁷ - 10⁸ K]

- Relaxation time scale of electrons and ions through Coulomb coupling is longer than the propagation time scale.

$$\tau_{\rm ei} \ge \tau_{\rm dyn} \qquad \tau_{\rm ei} \propto n^{-1} T_{\rm e}^{3/2}$$

- Electrons and ions could be decoupled in jets.

 $p_{\text{electron}} \neq p_{\text{ion}}$

1. Introduction - Energetics of radio-lobe -

- Pressure balance of radio-lobe, $P_{\text{ext}} \leq P_{\text{ion}} + P_{\text{ele}}$
- The under-pressured lobe indicate the existence of the non-radiating ions in the FR-II jets.

1. Introduction - Energetics of radio-lobe -

- Pressure balance of radio-lobe, $P_{\text{ext}} \leq P_{\text{ion}} + P_{\text{ele}}$
 - We can only estimate electron energy through radiation.

tł

 $P_{\mathbf{e}}$

- The ion energy are undetectable with current observational techniques!!

1. Introduction - Motivations -

We investigate

- the spatial energy distribution of electron and ion through two-temperature MHD jets simulation.
- the pressure balance between jet and surrounding medium, especially possibility of electron under-pressured lobe.

Method

- Basic equations
- The fraction of electron heating
- Model

Method - Basic equations Assumption

- Electron-Ion plasma, $n = n_{\rm i} = n_{\rm e}$
- One fluid approximation
- Electron and Ion have distinct temperature

MHD Eqs. + Electron and Ion. energy Eqs. $\int nT_{\rm i} \frac{ds_{\rm i}}{dt} = -q^{\rm ie} + (1 - f_{\rm e})q^{\rm heat}$ $nT_{\rm e} \frac{ds_{\rm e}}{dt} = +q^{\rm ie} + f_{\rm e}q^{\rm heat} - q^{\rm rad}$ [Colulomb] [Dissipation] [Radiation] 2. Method - The fraction of electron heating -Model 1: Turbulent dissipation into the electron and ions. $f_e = f_e(T_e/T_i, \beta_i)$ (Kawazura+ 2019) Magnetic energy dominant region : $f_e \rightarrow 1$ (electron heating), Thermal energy dominant region : $f_e \rightarrow 0$ (ion heating) Model 2: Dissipation in collisonless shock. $f_e = 0.05$ Shocks heat ions (e.g., Ghavamian+2013, Matsukiyo+2010).

2. Method - Model -MHD CODE : CANS+ (Matsumoto+2019, Ohmura+ 2019) Uniform Grids: (800,800,1200)

Jets parameter $L_{kin} = 2.0 \times 10^{46} \text{erg/s}$ $T_e = T_i = 3.0 \times 10^9 \text{K}$

Initial ICM profile β -profile (King+ 1972) $\rho(r) = \rho_0 \{1 + (r/r_c)^2\}^{-3\beta/2}$ $T_e = T_i = 2.3 \times 10^7 \text{ K} (2 \text{ KeV})$ $\rho_0 = 8.35 \times 10^{-26} \text{ g/cc}, r_c = 30 \text{ kpc}, \beta = 1/2$

Results

- Overview
- Energetics in jets
- Under-pressured lobe

3. Results - Overview -

Beam can reach termination, and form the terminal shocked.
The most of heating energy goes to ions.

3. Results - Energetics in jets -Volume-weighted pressure in radio-lobe. $P_{i,e,B}(z) = \frac{\int p_{i,e,B} 2\pi r dr dz}{\int 2\pi r dr dz} \qquad p_B = B^2/8\pi$

3. Results - Energetics in jets -

- In shocked-ICM, Ions and electrons decouple by bowshock. But, Coulomb interaction is effective because density is high.

- The lobe electron pressure is lower than shocked-ICM.

3. Results - Energetics in jets -

- Shocked-ICM electron pressure is higher than surrounding electron pressure everywhere.

- Lobe electrons have lower energy than ICM electrons (z<80).

3. Results - Under-pressured lobe -

- Shocked-ICM electron pressure is higher than surrounding electron pressure everywhere.

- On the other hand, lobe electron pressure is low.

Under-pressured lobe

Discussion

4. Discussion - Under-pressured lobe -

- The bow (cocoon) shocks of Cyg.A are clearly seen in highresolution Chandra observations.

- Shock compression is clearly observed at these shocks.

4. Discussion - Under-pressured lobe -

- However, the pressure of the eastern lobe, which is estimated by X-ray Inverse Compton, is lower than the rim pressure, *i.e.*, Under-pressured lobe.

- These observational analysis indicates that

 $P_{\rm lobe} < P_{\rm ICM} < P_{\rm shocked-ICM}$

	$p_{\rm rim}^{a}$ (10 ⁻¹⁰ erg cm ⁻³)	$\gamma_{ m min}$ b	$p_{\rm IC}^{\rm c}$ (10 ⁻¹⁰ erg cm ⁻³)
East	10.4 ± 0.4	1 10	$5.8^{+2.0}_{-1.4}$ $2.2^{+0.4}_{-0.4}$
West (de Vries+	8.4 ± 0.2 2019)	1 10	$140^{+1690}_{-116}\\18^{+40}_{-10}$

5. Summary

 We have carried out high-resolution two-temperature MHD jets propagate simulations.

- Beam, which propagating up to 100 kpc, can reach termination of jets, and terminal shock (hotspot) is formed.

- The magnetic energy is much less than the ion thermal energy, and hence most of heating energy goes to ions.

- The lobe electron pressure is lower than that of shocked-ICM and surrounding ICM, and under-pressured lobe is formed .