Study for the physical properties of AGN jets by radio imaging analyses of jet structure from the Schwarzschild-radius to galactic scales

Satomi Nakahara ISAS/JAXA

Nakahara et al. (2020), AJ, 159, 14 Nakahara et al. (2019), ApJ, 878, 61 Nakahara et al. (2018), ApJ, 854, 148

> A. Doi, Y. Murata (ISAS/JAXA) K. Hada (NAOJ) M. Nakamura, K. Asada (ASIAA) S. Sawada-satoh (Yamaguchi-U.) S. Kameno (Joint ALMA observatory)

Introduction

The measurement of AGN jet structure profile

100 1228+126 2200+420 W $d \propto r^{0.62 \pm 0.01}$ $W \propto r^{1.11 \pm 0.01}$ W(r) (mas) VLBA@15 GH z VLBA@15/1.4 GHz 3 0.1 0.5 10 2 5 1 1 10 100 1000 r (mas) r (maş) (mas) r

The jet structures were measured by radio observation in narrow range of \mathbf{r} in most cases.

Introduction

Theoretical model

The external pressure of the surrounding medium $P_{ext} \propto r^{-b}$ (r: Distance from the BH)

Jet width
$$W(r) \propto r^{\frac{b}{4}}$$
 $(a = \frac{b}{4})$

The profile of jet width covering the range from the Schwarzschild radius scale to the galactic scale

Introduction

Aim of this work

We measured the jet width profiles covering the range from the blackhole gravitational sphere ($< 10^5 R_S$) to the galactic scale

- Previous 2 samples + this work 3 samples \rightarrow total 5 samples
 - Increase the number of samples
 - Clarify the characteristics of jets (e.g. properties and differences)

APPROACH

Targets

Does the structure change depending on the type of jet ?

FR-I: edge-darkened • weak jet FR-II: edge-brightened · powerful jet Previous works ブル宇宙望遠鏡(可視光) M87 jet radio (KaVA 22GHz) FR-I M87 5光年 NRAO ブラックホールの存在位置 NGC 6251 @ VLA p://www.werner.lu/pn/phd/ngc6251.htm FR-I ~ 4 kpc

Targets

Selection points

Massive black hole · nearby galaxy

• The jet is covering the scale of structural transition ($\sim 10^5 R_s$)

• Bi-polar jet can be seen continuously

Source	Distance (Mpc)	BH mass (M _☉)	Analyzed region (R _s)	FR type	Bi-polar jet	Inclination (deg)
M 87 Asada+ 2012; Hada+ 2013	16.7	(3-6)×10 ⁹	10 ⁰ -10 ⁷ Structural transition@10 ⁵	Type I	×	15°
NGC 4261	31.6	4.9±1.0×10 ⁸	10 ² -10 ⁹ This work	Type I	0	63°
Cygnu s A Boccardi+ 2016; Bach 2005	249	7.5×10 ⁹	10 ^{2.5} -10 ⁹ This work	Type II	0	74.5°
NGC 1052	20	1.5 ×10 ⁸	10 ² -10 ⁹ This work	Type I	0	57~86°
NGC 6251 Tseng+ 2016	103	$6\pm 2 \times 10^{8}$	10 ³ −10 ⁹ Structural transition@10 ⁵	Type I	×	19°

Telescopes and frequencies

	Very Long Baseline Array (VLBA)	VLBI Space Observatory Programme (VSOP)	Very Large Array (VLA)	
Base line length	8611km	30,000 km	36 km	
Resolutions	0.17 mas~10mas	0.4~1.2 mas	0.1~8 arcsec	
Frequencies	1.4/2.3/4.9/8.4/15/22/43 GHz	1.6/4.8 GHz	1.6/8.3/22 GHz	

DATA

	Telescopes	Frequency v [GHz]	date	Original data	
NGC 4261	VLBA	1.4/2.3/5.0/8.4	5/July/2003		
		15/22/43	28/June/2003	Haga et al. 2015	
	VLA	1.4	Apr/1994		
		5.0	22/Apr/1984	Open data by C.C. Cheung	
	VSOP	1.6	7/Aug/2001	Kameno et al. 2003	
15.377 GHz 2000 Jul 24		4.8	31/Jul/2001		
	VLBA	2.3/8.4/15.4	17/Aug/2001		
		15.4/22.1/43.2	24/Jul/2000	Sawada-satoh et al. 2009	
	VLA	8.3	20/Jun/1998	NRAO Archive AR0396	
Cvanus A	VLBA	43	Oct/2007-2009	Boccardi et al. 2016	
		4.9	Oct/2002-2003	Bach PhD. thesis	
	VLA	22	4/Mar/1994	NRAO Archive GK0012	
		4.9	1984	Perley et al. 1984 (NED)	

Measuring method of jet width

Definition of "de-convolved jet width" W_{iet}

Fitted
Gaussian =
$$a \exp\left(\frac{-(x-b)^2 4 \ln 2}{\theta_{obs}^2}\right)$$

 $\theta_{obs}^2 = W_{jet}^2 + \theta_{beam}^2$

METHOD

Measuring method of "radiation" profile

13

Measuring method of the BH position

Correcting the core shift effect

- There is not always the black hole at the origin of the jet image
- Effect of optical thickness (frequency dependent)

It will change the results

- NGC 4261: Already measured the BH position (Haga+2016)
- Cyg A: We decide the BH position by using the measured core position in Bach 2004
- NGC 1052: We decide the origin of jet by using the measured jet speed in Vermeulen+2003

RESULTS

Jet width profiles
NGC 4261
NGC 1052
Cygnus A
Radiation profile
NGC 4261

Approaching jet (AJ) width profiles

Counter jet (CJ) width profiles

NGC 4261

NGC 1052

Cygnus A

RESULTS

Fitting function and results

Power-law (PL) fit

$$W_{jet}(r) = W_0 r^a$$

Broken power-law (BPL) fit

$$W_{\rm jet}(r) = W_0 \ 2^{\frac{a_{\rm u}-a_{\rm d}}{s}} \left(\frac{r}{r_{\rm b}}\right)^{a_{\rm u}} \left(1 + \left(\frac{r}{r_{\rm b}}\right)^s\right)^{\frac{a_{\rm d}-a_{\rm u}}{s}}$$

	NGC 4261			NGC 1052		Cygnus A	
	Width AJ	Width CJ	radiation AJ	Width AJ	width CJ	width AJ	width CJ
PL	\bigtriangleup	\bigtriangleup	×	×	×	2xPL 〇	0
BPL	0	0	0	0	0	-	-

RESULTS

Fitting results ($r = 10^3 \sim 10^9 R_s$)

- 1. The approaching and counter jet structure is symmetric within the error
- 2. NGC 4261 and NGC 1052 have a structural transition
- 3. Cygnus A does not have a transition but have a big gap in one order
- 4. The jet width varies by source

Physical properties

calculated by using <u>the jet width profile</u> and <u>the radiation profile</u>

- NGC 4261

Discussion about characteristics of 5 samples

- Difference between FR-I and FR-II
- Torus in NGC 1052
- Jet width deference in 5 samples
- A big gap in Cygnus A

DISCUSSION Calculation procedure of the physical properties using jet width and radiation profiles of NGC 4261 Jet width profile Flux profile 10¹⁰ 10¹ Approaching jet 1.4GHz VLBA Counter jet . 2.3GHz VLBA 5GHz VLBA 10⁰ W(r) [Rs] Best fit 10 8.4GHz VLBA 10⁻¹ 15GHz VLBA 22GHz VLBA 10⁶ 10⁻² 43GHz VLBA Measurements 1.4GHz VLA 5GHz VLA 10⁻³ Jet width 10^{4} error Best fit 10⁻⁴ 10^{2} 10⁻⁵ 10⁻⁶ 10 107 10⁸ 100 10^{2} 10^{4} 10⁶ 10¹⁰ 10⁶ 10² 104 10⁵ 10^{7} 10⁸ 10⁹ 10³ De-projected distance from the central engine $r [R_S]$ De-projected distance (Rs) Synchrotron Theory Equipartition Assumption Calculation results **Synchrotron Magnetic field** Jet pressure Magnetic energy **Synchrotron** luminosity per unit $B(r)^2W(r)^2$ [erg] luminosity per jet **B(r)** [G] P(r) [dyn/cm²] volume $[erg/s/R_s^3]$ length [erg/s/R_s] 1.4GHz VLBA 2.3GHz VLBA 5GHz VLBA 8.4GHz VLBA 15GHz VLBA 22GHz VLBA 43GHz VLBA 1.4GHz VLBA 2.3GHz VLBA 5GHz VLBA 8.4GHz VLBA 15GHz VLBA 22GHz VLBA 43GHz VLBA mas 10 1.4GHz VL/ 5GHz VL/ Best fit VLB/ Best fit VLA ۲) \bigcirc V(r) 1.4GHz VLBA 10 kolokythas(2015) O'sullivan(2011) \bigcirc 5 10⁴ D'sullivan(2011 B7 ළි 10² \bigcirc 1.4GHz VLBA 10 2.3GHz VLBA \bigcirc 2 3 .4GHz VLA 5GHz VLA 5GHz VLBA 8.4GHz VLBA Best fit VLBA 10 15GHz VLBA 3 3 22GHz VLBA 43GHz VLBA Best fit VLA 3 10 10³ 10⁸ 105 10⁶ 10 10 10.12 10^{2} 10 105 10⁶ 104 104 10⁶ De-projected distance r (R_S)

5 jet properties

A. Synchrotron luminosity per volume: L_{syn}/v [erg/s/R_s³] $L_{syn} = I(r) \times W(r) \times \Theta_{beam}$

B. Synchrotron luminosity per unit jet length: L_{syn}/I [erg/s/R_s]

C. Jet pressure: P(r) [dyn cm⁻²] $P_{radio} = \frac{B_{eq}^2}{2\mu_0\epsilon} + \frac{(1+k)E_e}{3V\phi}$ D. Magnetic field strength: B(r) [G] $B_{eq} = (6\pi(1+k) C_{12}L_{syn} \Phi^{-1} V^{-1})^{2/7}$

E. Magnetic energy: $B(r)^2W(r)^2$ [erg] $U_B = \frac{1}{2} \mu_0^{-1} B_{eq}^2 \pi W(r)^2$

A. Synchrotron luminosity per unit volume L_{syn}/v [erg/s/R_s³]

B. Synchrotron luminosity per unit jet length L_{syn}/I [erg/s/R_s]

C. Jet pressure P(r) [dyn cm⁻²]

C. Jet pressure P(r) [dyn cm⁻²] compared to external pressure in kpc scale

C. Jet pressure P(r) [dyn cm⁻²] compared to external pressure in kpc scale 1.4GHz VLBA 2.3GHz VLBA 5GHz VLBA 8.4GHz VLBA 15GHz VLBA The jet pressure 22GHz VLBA 43GHz VLBA \Rightarrow The hot gas pressure in X-ray @ >10⁷ R_s 1.4GHz VLA 5GHz VI A Best fit VLBA Best fit VLA kolokythas(2015) The jet pressure measurement of this study

is consistent with the X-ray result at kpc scales

The first measurement of the pressure distribution in $< 10^7 R_s$ by using VLBI/radio interferometry.

(In the case of the jet pressure is controlled by the external pressure)

D. Magnetic field strength B(r) [G]

(i) \propto r -0.81 ± 0.01 (ii) \propto r -1.25 ± 0.01 (iii) \propto r -0.29 ± 0.03

E. Magnetic energy $\propto B^2W(r)^2$ [erg/R_S]

The total energy per unit jet length

(i) $\propto r^{-0.24 \pm 0.01}$ (ii) $\propto r^{-0.48 \pm 0.01}$ (iii) $\propto r^{-0.83 \pm 0.15}$

The transition of spectral index in region (iii)

Energetics of the jet from forming to dissipation

Comparison of 5 samples Jet structure and transition

Over-collimation and plasma torus

power-law fit for LL power-law fit for RR upper limit (LL) ∇ upper limit (RR) W \propto r^{0.25 ± 0.03} width [rg] -2.0 -2.5 -3.0 10^{3} 10³ 10^{4} 10⁵ 0.0 -0.5 MilliArc seconds deprojected distance from the core [rg] **3C84 GEOMETRY** Symmetric Jets / Absorbing Disk Model 3C 84 jet suggests VIEW FROM SIDE VIEW FROM EARTH $P_{ext} \propto r^{-1}$ (Nagai+14) Walker+1995

3C 84 also host plasma torus and over-collimation structure

The external pressure by plasma torus makes $P \propto r^0$ (cylindrical)? \rightarrow Over collimation

The transition point is nearby the plasma torus size

The torus (over-)collimates the jet in NGC 1052 (and 3C 84)?

Comparison of 5 samples about Jet width

□ Narrow jet : 2 sources

- M87 (i~11 deg)
- NGC 6251 (i~19deg)

□ Broad jet : 3 sources

- NGC 4261 (i~63 deg)
- NGC 1052 (i~86 deg)
- Cygnus A (i~75 deg)

	inclination
Narrow jet	small
Broad jet	large

Layer of the jet

2000 Rs CygnusA VLBI 43 GHz (Boccardi et al. 2016)

M.Orienti (INAF)

Limb-brightening (Observation)Spine--sheath (Theoretical model)

1 1 r

Inner and outer layer have different speed

Beaming/de-beaming effect due to jet speed and inclination

Inclination small: faster layers get large Doppler factor (Brightening) Inclination large: Slow layers are relatively brighter than fast layer although both layer get dark

Big jump in Jet-width profile (Cygnus A)

Projected distance (arcsec) 10⁷ 10⁶ 10⁵ 10⁴ 10³ 10² 10¹ 10⁰ 10¹ 10² 10⁹ 10⁸ 10⁴ 10³ 10² 10¹ 10⁰ 10¹ 10² 10⁹ 10⁸ 10⁴ 10⁴ 10⁴ 10⁴ 10⁴ 10⁴ 10⁴ 10⁴ 10⁹ 10⁹ 10⁴ 10⁴

Assumptions in each layer (1) different brightness temperature (2) different jet speed

 \rightarrow Think the beaming effect viewing from inclination ~75 deg

Big jump in Jet-width profile (Cygnus A)

We considered quantitatively

Brightness ratio

Big jump in Jet-width profile (Cygnus A)

Recent theoretical models suggest that outer layer is faster than the inner one, e.g. Nakamura+ 2018

It is also possible that the big jump in Cygnus A jet is really expanding ... We have to more study for this mystery

Summary

We found common / different properties of AGN jet width profiles and approached its forming mechanism

- 1. Structure development (distance dependence)
 - The structural transition point depends on the object
 - Bipolar jets are quantitatively symmetric
 - Jet locally over-collimated by plasma torus
 - The structural transition differs between FR-I and FR-II type

2. Multi-layered structure?

- 5 samples of jet width suggests multi-layer structure,
- which causes differences in apparent jet width depending on the Inclination angle (beaming effect).

Summary

We suggest the energetics of NGC 4261 jet by observational measurements (jet-width & radiation profiles) at first.

