"Joint XMM-Newton and NuSTAR observations of the reflection spectrum of III Zw 2 "

<u>Wara Chamani</u>, Karri Koljonen and Tuomas Savolainen Aalto University Metsähovi-Radio Observatory, Finland

AGN Jet Workshop January 2020 Tohoku University, Sendai Spin estimation of the Supermassive Black Hole of III Zw 2

Black hole spin observations

→ 22 robust spin values measured using X-ray reflection method.

No Spin vs BH mass correlation.

Reynolds 2019.

Motivation of this work

FIG. 3.—Radio loudness \mathcal{R} vs. Eddington ratio λ . BLRGs are marked by filled circles, radio loud quasars by open circles, Seyfert galaxies and LINERs by crosses, FR I radio galaxies by open triangles, and PG quasars by filled stars.

Sikora+2007.

→ A wide radio-loudness (R) distribution in AGN.

at leat 4 orders of magnitude of accretion rate difference!.

What creates a powerful black hole jet? Spin paradigm" → attempts to explain the wide R (Wilson & Colbert 1995, Blandford 1999, Sikora+2007, Tschekhovskoy+2010).

> Powerful jet \rightarrow High black hole spin? Weak jet \rightarrow Low black hole spin?

Which other parameter can dominate besides the spin?

Motivation of this work

Magnetic flux threading the black hole \rightarrow that launch powerfull jets. "Magnetic flux paradign" \rightarrow may explain the *R* dichotomy (Sikora & Begelman2007).

Magnetically Arrested Disk (MAD) (Narayan + 2003; Tchekhovskoy +2011; McKinney + 2012) explains the powerful jets.

Jet magnetic flux versus $L_{acc}M_{BH}$ for FSRL+RG+Low Luminosity Radio Loud AGN. Solid line is the MAD prediction. (Zamaninasab+2014)

Motivation of this work

Magnetic flux threading the black hole → that launch powerfull jets. "Magnetic flux paradign" → could explain the *R* dichotomy (Sikora & Begelman2007)

Magnetically Arrested Disk (MAD) (Narayan + 2003; Tchekhovskoy +2011; McKinney + 2012) Tested in a sample of powerful jets.

Physical parameters MAD model: BH spin (X-rays) + Jet's Magnetic field flux (VLBI).

 Our sample (weak jets)
 (1<R<200):</th>

 E1821+643,
 III Zw 2 (presented in this conference), PG

 2209+184 and PG 1309+355.

Jet magnetic flux versus $L_{acc}M_{BH}$ for FSRL+RG+Low Luminosity Radio Loud AGN. Solid line is the MAD prediction. (Zamaninasab+2014)

The nature of III Zw 2.

- A RIQ, it certainly emits radiation from radio to gamma-ray wavelengths.
- Highly variable in radio band emissions.
- Li+2010: Quasi periodic activity. Outburst period ~ 5 years at 22 and 37 GHz. This might be due to the rotation of the helix in the jet.

37 GHz, Metsähovi Radio Observatory

VLBI observations of III Zw 2

It has a compact radio core.

10 58 50 00 DECLINATION (J2000) 35 30 25 20 15 10 RIGHT ASCENSION (J2000)

Core dominated flat radio spectrum

VLA-A configuration 1.4 GHz image in the MOJAVE sample (Cooper+2017).

MOJAVE archive.

A jetted source with a apparent superluminal motion :1.58±0.29c (Lister et al. 2019). Maximum jet's viewing angle: 41° (Brunthaler+2000).

X-ray reflection spectrum

Direct Power-la

ΒH

/"Reflection" spectrum

Observer

ХХ

disk

Accretion

Image credits: Fabian 2016.

X-ray reflection spectrum

Credits: Fabian 2016.

Black hole spin, FeK line at 6.4 keV

Image taken from NASA pictures.

Black hole spin, FeK line at 6.4 keV

X-ray Reflection spectrum

FIG. 2.—Reflection spectra from ionized matter for various values of the ionization parameter ξ . The dotted lines show the level of the illuminating power-law continuum for each value of ξ .

Image taken from NASA pictures.

Credits: Fabian+2000.

lonization degree

Simultaneous X-ray satellite observations of II ZW 2 Our observations were made on 11.12.2017 XMM-New on 11.94 hours of exposure 26.03 hours of exposure

 Broad Band energy X- ray observations (0.2 – 70 keV)

Data reduction: running different pipelines and checking of pileups. Data analysis with the ISIS (Interactive Spectral Interpretation System) package.

Reflection spectrum of III Zw 2

Our observations taken in 2017 gathered more X-ray data.

 Hard X-ray detections > 10keV.

- XMM archival data of 2000.
- X-ray flux increases after 17 years by a factor of ~2.

Search for the presence of Fek line Residuals of Power Law fit to the spectra

nergy of the FeK line: 6.4 keV

Search for the presence of FeK line Residuals of Power Law (PL) fit to the spectra

Energy of the FeK line: 6.4 keV

FeK line detection (Salvi+2002, Piconcelli+2005, Jiménez-Bailón+2005).

Search for the presence of FeK line Residuals of a Power law + Black Body fit

A good improvement on the fitting of the 2017-soft excess.

Soft-excess still visible on the 2000 data.

 Black body temperatures: 136-144 eV >> standard disk temperature (~10 eV).

Which mechanism is driving the soft-excess?

Energy of the FeK line: 6.4 keV

X-ray relativistic reflection models

±ν (a.u

RELXILL model (Garcia +2014).

RELXILL-LP (Lamp-post) model (Dauser+2013).

Images credits: Chauvin+2018

RELXILL code

XILLVER code (reflected spectrum)

RELLINE code (relativistic blurring effects)

X-ray relativistic reflection models

Physical parameters

- Spin: a
- Reflection fraction: R
- Disk Inclination: θ
- Ionization parameter: ξ
- Iron Abundance: A_{FF}

Power Law photon index: **Г**

RELXILL-LP (Lamp-post) model (Dauser+2013).

Images credits: Chauvin+2018

Fitting the data with RELXILL

Spin 'a' and other parameters obtained with a joint-fit

• *a* > 0.98.

θ ~ 41° (pegged to the limit)
R₂₀₀₀ ~ 2* R₂₀₁₇

Relxill joint-fit results for different disk inclination

θ	а	Γ_{2000}	Γ_{2017}	$log(\xi)$ (erg cm s ⁻¹)	$A_{Fe}(solar)$	<i>R</i> ₂₀₀₀	<i>R</i> ₂₀₁₇	χ^2 /d.o.f
5°	≥ 0.976	$1.78^{+0.02}_{-0.03}$	$1.87\substack{+0.02 \\ -0.01}$	$2.73^{+0.04}_{-0.01}$	$2.71^{+0.50}_{-0.52}$	$1.04^{+0.18}_{-0.16}$	$0.55^{+0.07}_{-0.05}$	777/599 (1.30)*
10°	≥ 0.978	$1.78^{+0.02}_{-0.03}$	$1.87^{+0.02}_{-0.01}$	$2.73^{+0.04}_{-0.03}$	$2.67^{+0.50}_{-0.52}$	$1.04\substack{+0.18\\-0.12}$	0.56 ± 0.06	772/599 (1.29)*
22°	≥ 0.983	$1.78^{+0.02}_{-0.03}$	$1.87^{+0.02}_{-0.01}$	$2.73^{+0.03}_{-0.05}$	$2.47^{+0.51}_{-0.53}$	$1.07\substack{+0.18 \\ -0.16}$	$0.56^{+0.06}_{-0.05}$	746.8/599 (1.25)*
35°	≥ 0.986	1.77 ± 0.03	$1.87\substack{+0.02 \\ -0.01}$	$2.71^{+0.02}_{-0.05}$	$2.18^{+0.52}_{-0.56}$	$0.99_{-0.14}^{+0.17}$	$0.52^{+0.06}_{-0.05}$	710.4/599 (1.19)
40°	≥ 0.988	$1.77^{+0.02}_{-0.03}$	1.87 ± 0.01	$2.70^{+0.04}_{-0.05}$	$2.05^{+0.54}_{-0.56}$	$0.93^{+0.15}_{-0.14}$	0.49 ± 0.05	698.3/599 (1.17)
50°	≥ 0.992	1.76 ± 0.02	1.86 ± 0.01	$2.70^{+0.02}_{-0.06}$	$1.56^{+0.54}_{-0.57}$	$0.83^{+0.15}_{-0.11}$	$0.43^{+0.05}_{-0.04}$	691.3/599 (1.15)
60°	≥ 0.993	1.73 ± 0.02	$1.84{\pm}~0.01$	$2.70^{+0.02}_{-0.07}$	$1.19^{+0.65}_{-0.23}$	$0.56^{+0.08}_{-0.09}$	0.31 ± 0.03	693/599 (1.17)*
70°	≥ 0.993	1.85 ± 0.02	$1.92^{+0.02}_{-0.01}$	$1.30^{+0.08}_{-0.17}$	$0.72^{+0.23}_{-0.22}$	0.48 ± 0.07	$0.31\substack{+0.03\\-0.04}$	708/599 (1.18)*
80°	≤ 0.298	$1.82^{+0.01}_{-0.02}$	1.89 ± 0.01	$1.11^{+0.20}_{-0.09}$	$0.64^{+0.26}_{-0.14}$	$0.29^{+0.01}_{-0.05}$	$0.18\substack{+0.03 \\ -0.02}$	729.6/599 (1.22)*
$55^{\circ} \pm 2^{\circ}$	≥ 0.992	1.74 ± 0.02	1.85 ± 0.01	$2.70^{+0.02}_{-0.05}$	$1.57^{+0.51}_{-0.46}$	$0.64^{+0.15}_{-0.09}$	$0.35\substack{+0.05 \\ -0.03}$	685.2/598 (1.15)

Relxill joint-fit results for different disk inclination

θ	а	Γ_{2000}	Γ_{2017}	$log(\xi)$ (erg cm s ⁻¹)	$A_{Fe}(solar)$	<i>R</i> ₂₀₀₀	<i>R</i> ₂₀₁₇	χ^2 /d.o.f
5°	≥ 0.976	$1.78^{+0.02}_{-0.03}$	$1.87^{+0.02}_{-0.01}$	$2.73^{+0.04}_{-0.01}$	$2.71^{+0.50}_{-0.52}$	$1.04^{+0.18}_{-0.16}$	$0.55\substack{+0.07 \\ -0.05}$	777/599 (1.30)*
10°	≥ 0.978	$1.78^{+0.02}_{-0.03}$	$1.87^{+0.02}_{-0.01}$	$2.73^{+0.04}_{-0.03}$	$2.67^{+0.50}_{-0.52}$	$1.04\substack{+0.18\\-0.12}$	0.56 ± 0.06	772/599 (1.29)*
22°	≥ 0.983	$1.78^{+0.02}_{-0.03}$	$1.87^{+0.02}_{-0.01}$	$2.73^{+0.03}_{-0.05}$	$2.47^{+0.51}_{-0.53}$	$1.07\substack{+0.18 \\ -0.16}$	$0.56\substack{+0.06\\-0.05}$	746.8/599 (1.25)*
35°	≥ 0.986	1.77 ± 0.03	$1.87^{+0.02}_{-0.01}$	$2.71^{+0.02}_{-0.05}$	$2.18^{+0.52}_{-0.56}$	$0.99_{-0.14}^{+0.17}$	$0.52^{+0.06}_{-0.05}$	710.4/599 (1.19)
40°	≥ 0.988	$1.77^{+0.02}_{-0.03}$	1.87 ± 0.01	$2.70^{+0.04}_{-0.05}$	$2.05^{+0.54}_{-0.56}$	$0.93\substack{+0.15 \\ -0.14}$	$0.49 {\pm} 0.05$	698.3/599 (1.17)
50°	≥ 0.992	1.76 ± 0.02	1.86 ± 0.01	$2.70^{+0.02}_{-0.06}$	$1.56^{+0.54}_{-0.57}$	$0.83^{+0.15}_{-0.11}$	$0.43^{+0.05}_{-0.04}$	691.3/599 (1.15)
60°	≥ 0.993	1.73 ± 0.02	$1.84{\pm}~0.01$	$2.70^{+0.02}_{-0.07}$	$1.19^{+0.65}_{-0.23}$	$0.56^{+0.08}_{-0.09}$	0.31 ± 0.03	693/599 (1.17)*
70°	≥ 0.993	1.85 ± 0.02	$1.92^{+0.02}_{-0.01}$	$1.30^{+0.08}_{-0.17}$	$0.72^{+0.23}_{-0.22}$	0.48 ± 0.07	$0.31_{-0.04}^{+0.03}$	708/599 (1.18)*
80°	≤ 0.298	$1.82^{+0.01}_{-0.02}$	1.89 ± 0.01	$1.11_{-0.09}^{+0.20}$	$0.64^{+0.26}_{-0.14}$	$0.29\substack{+0.01\\-0.05}$	$0.18\substack{+0.03 \\ -0.02}$	729.6/599 (1.22)*
$55^{\circ} \pm 2^{\circ}$	≥ 0.992	1.74 ± 0.02	1.85 ± 0.01	$2.70^{+0.02}_{-0.05}$	$1.57^{+0.51}_{-0.46}$	$0.64^{+0.15}_{-0.09}$	$0.35^{+0.05}_{-0.03}$	685.2/598 (1.15)

Summary and discussion

Soft -excess observed in the XMM 2000 and 2017 data sets.

 A promiment Fe Kα line detected in the XMM 2000 data set (Salvi + 2002; Piconcelli + 2005; Gonzalez + 2018).

 The relxill fits favour fast rotating black hole a~0.9 in II Zw 2, but it has a weak jet!.

High spins does not produce necessarily powerful jets.

 Do III Zw 2 jet is below the MAD level? We will measure the magnetic flux with VLBI observations (in collaboration with Hada-san).

