MAD in Action in M87

Masanori Nakamura (ASIAA)

J. Park (ASIAA), Y. Cui, K. Hada (NAOJ), M. Kino (Kogakuin U./NAOJ), K. Toma (Tohoku U.), T. Kawashima (NAOJ), J.-Y. Kim (MPIfR), B. W. Sohn, T. Jung, S.-S. Lee (KASI), and EAVN AGN SWG

AGN Jet Workshop 2020, Jan. 20 - 22, Tohoku U., Sendai

"VLBI study of AGN Jets" during the last decade

- Lesson from M87 to others: <u>Acc. & Colli. zone (ACZ</u>: Marscher+ 2008) as "Pipeline" (Marscher & Gear 1985) and Jet Collimation Break (JCB: Asada & MN 2012), providing a physical extent of ACZ (Park's talk)
- Thrilling results with EHT, but <u>the horizon-scale jet</u> in M87 is still unknown (or has no strong constraints)

 Any unique usage of EAVN facilities to understand the fundamental physics in AGN jets?

Event Horizon Telescope

Outline

Global Structure of AGN Jets: ACZ + JCB

ACZ & JCB in a FSRQ: See, Lee (SNU)'s talk

from paper I (EHTC 2019a)

 Synthesized emission: the funnel wall and/or • BH spin (a=0 can't do >10⁴² erg/s): accretion flow with $\sigma < 1: \Gamma_{\infty} \rightarrow 1$ $|a| \le 0.94$

 σ : Poynting flux per unit matter energy flux

 Connection with the extended jet (relativistic outflow: $\Gamma_{\infty} \gg 1$) is unknown

Event Horizon Telescope

• BH mass: $M_{\bullet} = (6.5 \pm 0.7) \times 10^9 M_{\odot}$

- Mass accretion rate: $\dot{m} (\equiv \dot{M} / \dot{M}_{Edd}) \simeq 5 \times 10^{-7} - 3 \times 10^{-4}$
- Jet power: $10^{42} \text{ erg s}^{-1} < P_{\text{iet}} \ (\le 10^{43} \text{ erg s}^{-1})$

- Magnetic flux: $\phi = 3.6 - 56.5 \text{ (units of } \sqrt{\dot{M}R_g^2 c}\text{)}$
- Electron temperature: $T_{\rho} \simeq T_{i}/(10 - 160)$
- PAGRMHD (forward jet): $235^{\circ} \pm 65^{\circ} (\text{Apr } 5 - 11)$

Magnetically Arrested Disk (MAD)

Event Horizon Telescope

 Poloidal magnetic field supports the accreting gas against the BH gravity (Narayan+ 2003; Igmenshchev 2008)

$$\frac{\mathcal{B}_p^2}{8\pi} \simeq \frac{GM\rho}{R_{\rm g}} = \rho c^2$$

$$\Phi = \phi \sqrt{\dot{M} R_g^2 c}$$

$$\simeq 10^{33} \phi \, \dot{m}^{1/2} m_9^{3/2} \, \text{Mx (G cm}^2)$$

$$\dot{m} \lesssim 0.01 \, (\text{RGs, BL Lacs})$$

• **GRMHD** Simulations:

 $\phi < 10$ (SANE), $\phi \sim 40 - 80$ (MAD) (Narayan+ 2012; Sadowski+ 2013)

Supporting MAD in observations:

 $\Phi_{\rm iet} = 10^{31} - 10^{35} \,\,{
m Mx}$ (Zamaninsab+ 2014) $P_{\rm jet} \gtrsim \dot{M}c^2$ (Ghisellini+ 2014)

Event Horizon Telescope

MAD Can Make $P_{iet} > \dot{M}c^2$

Motivations

6.3. Jet Power

Estimates of M87's jet power (P_{iet}) have been reviewed in Reynolds et al. (1996), Li et al. (2009), de Gasperin et al. (2012), Broderick et al. (2015), and Prieto et al. (2016). The estimates range from 10^{42} to 10^{45} erg s⁻¹. This wide range is a consequence of both physical uncertainties in the models used to estimate P_{iet} and the wide range in length and timescales probed by the observations. Some estimates may sample a different epoch and thus provide little information on the state of the central engine during EHT2017. Nevertheless, observations of HST-1 yield $P_{\rm iet} \sim 10^{44}$ erg s⁻¹ (e.g., Stawarz et al. 2006). HST-1 is within \sim 70 pc of the central engine and, taking account of relativistic time foreshortening, may be sampling the central engine P_{iet} over the last few decades. Furthermore, the 1.3 mm light curve of M87 as observed by SMA shows $\leq 50\%$ variability over decade timescales (Bower et al. 2015). Based on these considerations it seems reasonable to adopt a very conservative lower limit on jet power $\equiv P_{\text{jet,min}} = 10^{42} \text{ erg s}^{-1}$.

from paper V (EHTC 2019e)

Current jet power needs be examined with further inner regions (mm/cm VLBI)

Event Horizon Telescope

 $P_{\rm i} = (6.6 - 13.0) \times 10^{42} \,\rm erg \, s^{-1}$

Event Horizon Telescope

• Punsly (2019) argue both SANE and MAD jets (M16, C19) are narrower than real jet at 43/86GHz (Hada+ 2013, 2016)

GRMHD sim. $\rightarrow \phi$

Event Horizon Telescope

Innermost Structure of the M87 Jet

• SSA thick VLBI cores $\rightarrow |B| (z < 50 r_g)$

Hada+ (2012, 2016); Kino+ (2014, 2015) $\Phi_{43-230\,GHz}$

 $\simeq (1-2) \times 10^{33} \operatorname{Mx} (\operatorname{G cm}^2)$

• Enclosed current $I(\Phi)$

e.g. Mestel (1969); Okamoto (1978); Beskin (1997); Narayan+ (2007)

$$I(\Phi) = \frac{c}{2} R B_{\phi} \approx -\frac{\Omega_{\rm F} \Phi}{2\pi}$$
$$\simeq (1.5 - 3) \times 10^{17}$$

Electromagnetic (Poynting) luminousity

 $L_{\rm EM} = I^2 z \simeq (4 - 15) \times 10^{43} \text{ erg s}^{-1}$ $(z \sim 160 \,\Omega, \, a = 0.9)$

Axisymmetric 2D GRMHD Survey

Event Horizon Telescope

Lateral Expansion & Acceleration

M87

GRMHD sin. & ULBI obs.

Event Horizon Telescope

Quasi-simultaneous Monitoring of VLBI Core

- Past efforts w/ KVN 22-129GHz (2012-2016; Kim, Lee+ 2018)
- Spectral steeping, but limited (u, v) coverage and/or structure blending?
- True spectrum of the jet base can be flat up to 129 GHz
- Partially SSA-thick at 230GHz? (Kino 2015+)
- mm-cm bands (\geq 43 GHz) where the SSA-thick core exists (Hada + 2011; $r \leq 50 r_g$)

• Assuming the poloidal flux conservation in the funnel, $\Phi_{\rm EH}$ can be extracted from VLBI core at

Let's see imaging the jet w/ EHT@230GHz / GMVA@86GHz in 2020

Event Horizon Telescope

- in the approaching jet side ($\leq 100 \,\mu as$)

- parameters ($\Phi_{\rm EH}, L_{\rm EM}, M$) in M87
- EHT2020: Simultaneous obs. with EAVN/KVN (22/43/86/129GHz) and GMVA+ALMA towards VLBI cores
- Presumably, MAD in action in M87:
 - $\phi \simeq 30 70$
 - $\Phi_{\rm EH} \simeq 10^{33} \, (\phi/60) \, (\dot{m}/4 \times 10^{-6})^{1/2} \, (M/6.5 \times 10^9 \, M_{\odot})^{3/2} \, {\rm Mx}$
 - $L_{\rm EM} \simeq (4 15) \times 10^{43} \, {\rm erg \, s^{-1}}(a = 0.9)$
 - Limb-brightened feature is one of key observables

Event Horizon Telescope

Summary

MWL data (< 230 GHz) is useful to nail down the horizon-scale

Credit: ESO/L. Calçada

Jan 31, 2020: Deadline for registrations / abstract submission http://eaagn2020.csp.escience.cn/dct/page/1

