Hadronic Gamma Rays from the Hot Accretion Flow in M87

FRIS, Tohoku University (JSPS Research Fellow)

Shigeo S. Kimura

References SSK, Toma in preparation

see also: SSK, Murase, Toma, 2015, ApJ, 806, 159 SSK, Murase, Meszaros in preparation SSK, Toma, Suzuki, Inutsuka, 2016, ApJ, 822, 88 SSK, Tomida, Murase, 2019, MNRAS, 485, 163

Collaborators

K. Toma (Tohoku Univ.); K. Murase (Penn State; YITP) P. Meszaros (Penn State); K. Tomida (Osaka Univ.) T.K. Suzuki (Univ. Tokyo); S.-i.Inutsuka (Nagoya Univ.)

Theoretical Astrophysics Tohoku University

AGN Jet Workshop 2020/FRIS International Workshop 2020@Sendai

Contents

- Motivation for hadronic emission from RIAFs
 - Particle Acceleration in RIAFs
 - RIAFs as Neutrino Sources
- Hadronic Emission from MADs in Radio Galaxies
- Summary

M87 Observations

10'' 10'^{*} 10'' 10⁻ 10⁻ 10⁻ 10⁻ Frequency, ν [Hz]

 HE & VHE γ-rays are observed, but emission region & mechanism are not known

10[°]

- Leptonic jet model: too weak magnetic field (mG)
- Hadronic jet model: very high power (>10⁴⁵ erg/s)

Contents

- Motivation for hadronic emission from RIAFs
 - Particle Acceleration in RIAFs
 - RIAFs as Neutrino Sources
- Hadronic Emission from MADs in Radio Galaxies
- Summary

Accretion flows in AGNs

Particle Acceleration in Accreti

Particle-In-Cell Simulatio

al. 2016

14.28

 10^{-1} 10^{0} 10^{1} 10^{2} ϵ/mc^{2}

hce

8.84

- Magneto-rotational instability (MRI) drive
- Turbulence triggers magnetic reconnection
- Distribution function: Thermal → Non-thermal tail

(0

Magnetic reconnection accelerates CRs in plasma scale

Particle Acceleration in Accretion Flows

SSK et al 2016; SSK et al. 2019 see also Lynn et al. 2014

- Turbulence interacts with CRs
- Distribution function: broadened due to wave-particle interaction

 $\varepsilon/\varepsilon_{ini}$

MHD turbulence further accelerates CRs

High-Energy Emission

Mahadevan et al. 1997; SSK et al. 2015

- Interaction between CRs and matter/photons
 → efficient neutrino & gamma-ray emissions
- TeV-PeV γ -rays are absorbed by $\gamma\gamma$ pair production \rightarrow MeV-GeV photons from the RIAF

Contents

- Motivation for hadronic emission from RIAFs
 Particle Acceleration in RIAFs
 - RIAFs as Neutrino Sources
- Hadronic Emission from MADs in Radio Galaxies
- Summary

Detection of Astro-Neutrinos

Pre-IceCube Models

Cosmic-ray accelerators

11

mainly $p\gamma$ interaction

• Active Galactic Nuclei (AGN)

Blazars & Iuminous Seyfert galaxies

• Gamma Ray Bursts (GRBs)

Cosmic-ray reservoirs

mainly pp interaction

• Star Forming Galaxies (SFG)

• Galaxy Group / Galaxy Cluster

Model-independent Constraints

No point-source detection disfavors luminous sources (GRBs, Blazars, Jetted TDEs)

Murase et al. 2013, 2016; Ahler & Halzen 2017

TeV γ rays

 \rightarrow accompanying γ overshoot Fermi data

 \rightarrow v sources should be opaque to

Models for 10 TeV Neutrinos

Cosmic-ray accelerators

mainly $p\gamma$ interaction

• Active Galactic Nuclei (AGN)

- Gamma Ray Bursts (GRBs)
- LLGRBs

13

Murase et al. 2013; Boncioli Current 2018 Current and a series and a Cosmic-ray reservoirs
 mainly pp interaction

• Star Forming Galaxies (SFG)

• Galaxy Group / Galaxy Cluster

AGN Core Model

Murase, SSK et al. 2019

Coronae in QSOs

Mahadevan et al. 1997; SSK et al. 2015, 2019, in prep.

RIAFs in LLAGNs

reacceleration?

• Transport equations for primary protons and secondary $e^+e_{RQ} & K = \frac{1}{2} \frac{\partial}{\partial p} \left(\varepsilon_p^2 D_{\varepsilon_p} \frac{\partial F_p}{\partial z} + \frac{\varepsilon_p^3}{z} F_p \right) - \frac{F_p}{z} + \dot{F}_{p,inj}$

$$\frac{1}{\partial t} = \frac{1}{\varepsilon_p^2} \frac{1}{\partial \varepsilon_p} \left(\varepsilon_p^2 D_{\varepsilon_p} \frac{1}{\partial \varepsilon_p} + \frac{1}{t_{p-cool}} F_p \right) - \frac{1}{t_{esc}} F_{p,inj}$$

$$\frac{\partial n_{\varepsilon_e}^e}{\partial t} + \frac{\partial}{\partial \varepsilon_e} \left[(P_{IC} + P_{syn} + P_{ff} + P_{Cou}) n_{\varepsilon_e}^e \right] = \dot{n}_{\varepsilon_e}^{(\gamma\gamma)} - \frac{n_{\varepsilon_e}^e}{t_{esc}} + \dot{n}_{\varepsilon_e}^{inj},$$

$$\frac{\partial n_{\varepsilon_\gamma}^{\gamma}}{\partial t} = -\frac{n_{\varepsilon_\gamma}^{\gamma}}{t_{\gamma\gamma}} - \frac{n_{\varepsilon_\gamma}^{\gamma}}{t_{esc}} + \dot{n}_{\varepsilon_\gamma}^{(IC)} + \dot{n}_{\varepsilon_\gamma}^{(ff)} + \dot{n}_{\varepsilon_\gamma}^{(syn)} + \dot{n}_{\varepsilon_\gamma}^{inj} + \dot{n}_{\varepsilon_\gamma}^{inj}$$

• AGN cores can account for a broad range of $\gamma \& v$ bkgd.

Contents

- Motivation for hadronic emission from RIAFs
 Particle Acceleration in RIAFs
 RIAFs as Neutrino Sources
- Hadronic Emission from MADs in Radio Galaxies
- Summary

Accretion Flow in FR-I Galaxies

Accretion Flow in FR-I Galaxies

-5

•

McKinney et al. 2012 Powerful jet \rightarrow Strong magnetic field \rightarrow Magnetically Arrested Disks (MAD)

10

 $x [r_a]$

Reconnection with strong magnetic field → most of released energy may go to non-thermal protons

Model

c.f.) Mahadevan et al. 1997; SSK et al. 2015, 2019, in prep

- Consider Steady & one-zone accreting plasma
- Non-thermal protons emit gamma-rays through hadronic interactions
- Thermal electrons emit soft photons through Synchrotron & SSC \rightarrow take $\gamma\gamma$ attenuation by soft photons into account
- Secondary e+e- pairs emit soft radiations through Synchrotron

$$\begin{split} V_R &\approx \frac{1}{2} \alpha V_K \simeq 3.4 \times 10^8 \mathcal{R}_1^{-1/2} \alpha_{-1} \ \mathrm{cm} \ \mathrm{s}^{-1}, \\ C_s &\approx \frac{1}{2} V_K \simeq 3.4 \times 10^9 \mathcal{R}_1^{-1/2} \ \mathrm{cm} \ \mathrm{s}^{-1}, \\ H &\approx \frac{1}{2} R \simeq 1.5 \times 10^{14} \mathcal{R}_1 M_8 \ \mathrm{cm}, \\ n_p &\approx \frac{\dot{M}}{4\pi m_p R H V_R} \simeq 4.6 \times 10^8 \mathcal{R}_1^{-3/2} \alpha_{-1}^{-1} M_8^{-1} \dot{m}_{-2} \ \mathrm{cm}^{-3}, \\ B &\approx \sqrt{\frac{8\pi P_g}{\beta}} \simeq 2.6 \times 10^2 \mathcal{R}_1^{-5/4} \alpha_{-1}^{-1/2} M_8^{-1/2} \dot{m}_{-2}^{1/2} \beta_{0.5}^{-1/2} \ \mathrm{G}, \\ V_A &\approx \frac{B}{\sqrt{4\pi m_p n_p}} \simeq 2.7 \times 10^9 \mathcal{R}_1^{-1/2} \beta_{0.5}^{-1/2} \ \mathrm{cm} \ \mathrm{s}^{-1}, \end{split}$$

Soft photons in RIAFs

c.f.) Kawashima-san's talk Mahadevan et al. 1997; SSK et al. 2015, 2019, in prep

- Synchrotron peak at radio
- SSC for IR to MeV gamma
- high accretion rate
 → luminous & hard
- higher black hole mass
 → luminous
- Electron temperature: always MeV range
- Our model is consistent with X-ray observation in terms of
 - softening in hard X-ray range
 - anti-correlation of λ_{Edd} Γ_{x}

Non-thermal Protons

• Transport equation: $\frac{d}{dc} \left(-\frac{d}{dc}\right)^{2}$

$$\frac{d}{d\varepsilon_p} \left(-\frac{\varepsilon_p}{t_{\text{cool}}} N_{\varepsilon_p} \right) = \dot{N}_{\varepsilon_p, \text{inj}} - \frac{N_{\varepsilon_p}}{t_{\text{esc}}},$$

Power-law injection:

$$\dot{N}_{\varepsilon_p,\text{inj}} = \dot{N}_0 \left(\frac{\varepsilon_p}{\varepsilon_{p,\text{cut}}}\right)^{-s_{\text{inj}}} \exp\left(-\frac{\varepsilon_p}{\varepsilon_{p,\text{cut}}}\right)$$

SED for M87

- Roughly consistent with observed broadband spectrum
- $L_{CR} = 0.1 \dot{M}_{C} \rightarrow MAD \mod achieves \ observed \ GeV \ flux$
- radio (<10 GHz) & TeV γ should be produced by other regions

SED for NGC 315

SSK & Toma in prep.

 Rough agreement with observed dat with the same parameter set of M87 except for M_{BH} & M

High-Energy Backgrounds from MAD in Radio Galaxies

 Radio luminosity function for "jet-mode AGN"

24

 10^{-4} z = 0.1Number density/Mpc⁻³ log₁₀ (L)⁻¹ M87-like 10⁻⁵ 10⁻⁶ 10⁻⁷ Heckman & Best 2014 10⁻⁸ Radio-loud, radiative-mode AGN Radio-loud, jet-mode AGN 10^{-9} 25 23 24 26 27 22 $\log_{10} (L_{\rm NVSS} / W \, {\rm Hz}^{-1})$ $P_0 = 10^{24.95} \text{ W/Hz}$ $\rho = \rho_0 / \left[(P/P_0)^{\alpha} + (P/P_0)^{\beta} \right].$ $\rho_0 = 10^{-5.33} \text{ Mpc}^{-3}$

 Convert Radio luminosity to γ-ray luminosity

$$\log_{10}(L_{\gamma}) = (-3.90\pm0.61) + (1.16\pm0.02) \log_{10}(L_{5 \text{ GHz}}),$$

$$\begin{pmatrix} 48 \\ 47 \\ -10 \\ -46 \\ 45 \\ -46$$

High-Energy Backgrounds from MAD in Radio Galaxies

25

 MeV gamma-rays, GeV gamma-rays, & TeV-PeV neutrinos can be explained simultaneously with the same parameter set

Contents

- Motivation for hadronic emission from RIAFs
 Particle Acceleration in RIAFs
 RIAFs as Neutrino Sources
- Hadronic Emission from MADs in Radio Galaxies
- Summary

Summary

- Cosmic-rays are naturally accelerated in hot accretion flows, especially in MADs by magnetic reconnection
- Radio-galaxies likely host MADs, leading to hadronic emissions
- With a one parameter set, hadronic emission from MAD can reproduce the gamma-ray observations for M87 & NGC 315
- With the same parameter sets, hadronic emission from MADs will produce wide range of cosmic high-energy backgrounds.

Thank you for your attention