EHT observations and imaging of 3C 279 at 20 μas

Jae-Young Kim (MPIfR)

with: T. P. Kricbaum, A. E. Broderick, M. Wielgus, L. Blackburn, J. –L. Gomez, M. D. Johnson, K. L. Bouman, A. Chael, K. Akiyama, S. G. Jorstad, A. P. Marscher, S. Issaoun, M. Janssen, C.-K. Chan, T. Savolainen, D. W. Pesce, F. Ozel, et al.

with the EHT collaboration and EHT AGN & MWL WGs

Event Horizon Telescope

Sendai AGN Jet Workshop, Sendai, Japan, 21 Jan 2020

MAX-PLANCK-GESELLSCHAFT Ma

Max-Planck-Institut für Radioastronomie

Layout

- Background
- EHT observations
- Key results images, rapid variability
- Analysis imaging, dynamic model-fitting
- Discussions, interpretations
- Conclusions & outlook

Introduction

AGN jet physics on various scales

Key questions to address

- Magnetic launching: Blandford & Znajek (black hole) vs. Blandford & Payne (disk)
- Magnetic field, velocity stratification, and collimation profile in the acceleration and collimation zone
- Transition between the Poynting (ordered B, accelerating) to kinetically-flux (partially disordered B, conical) regimes.

Polarimetric VLBI imaging at resolution $\lesssim 50 \ \mu$ as ($\lesssim 10^4 \ R_s$) is required

Slide from EHT AGN WG

High resolution imaging of various AGN jets

Major science motivations:

- 1. study jet formation for different source classes (FRI/FRII, FSRQ/BLLac), luminosities, BH masses
- 2. test specific models, BP vs. BZ, magnetic vs. kinetic, etc.
- 3. compare hot accretion, thick disk (SgrA*, RIAF), vs. cold accretion, thin disk (FSRQs)
- 4. location of γ -ray emission, SSC vs ECs; seed photons?
- 5. AGN often highly polarized \rightarrow B-field in jet launching region
- 6. RM studies \rightarrow densities and matter composition (internal & ambient)
- 7. Address differences in B-field topology and jet speed between source classes (SgrA*, LLAGN, RGs, BLLacs, FSRQs)

Padovani+2017 (AARev)

Slide from

EHT AGN WG

3C 279: an archetypal blazar

- One of fastest AGN jets observed by VLBI ($\gamma \sim 10-40$)
 - First AGN jet showing apparent superluminal motions on monthly timescale (Whitney+71, Cohen+71)
 - Many speeds seen in the jet (~10*c* 40*c*) with acceleration, deceleration, and curvatures

3C 279: an archetypal blazar

- Bright and highly variable gamma-ray emission
 - One of first EGRET sources (Fichtel+ 1994), arguably the most studied gamma-ray AGN
 - Rapid gamma-ray variabilities (record holder: 5 min!)
 - Often requires jet $\gamma > 100$ (how to achieve?)
 - Invoke various models (turbulences, jet-in-jet, hadronic plasma etc)
 - Important to identify and determine by VLBI technique:
 - jet acceleration & collimation zone
 - most variable regions
 - jet composition

3C 279: an archetypal blazar

- Rapid (optical) polarization variability (e.g., Abdo+10)
 - EVPA swings over days, often coincident with fast gamma-ray flares
 - Polarization variability often deterministic (e.g., not random-walk events; Kiehlmann+16)
- High VLBI linear & circular polarization detections
 - Constrains jet plasma composition; significant amount of e⁺e⁻ pair (e.g., Wardle+99; Homan+09)

Past 1mm VLBI observations of 3C279

7000

Presence of **ultracompact jet** features repeatedly found: pilot 1mm VLBI obs. (up to 7Glambda; Lu+13; Wagner+15)

- **Detailed structure** of those ٠ compact features however remained **elusive** (only crude model-fitting)
- *Imaging* the ultracompact ٠ structure is crucial

Observations & key findings

Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution

Jae-Young Kim¹, Thomas P. Krichbaum¹, Avery E. Broderick^{2,3,4}, Maciek Wielgus^{5,6}, Lindy Blackburn^{5,6}, José L. Gómez⁷, Michael D. Johnson^{5,6}, Katherine L. Bouman^{5,6,8}, Andrew Chael^{9,10}, Kazunori Akiyama^{11,12,13,5}, Svetlana Jorstad^{14,15}, Alan P. Marscher¹⁴, Sara Issaoun¹⁶, Michael Janssen¹⁶, Chi-kwan Chan^{17, 18}, Tuomas Savolainen^{19, 20, 1}, Dominic W. Pesce^{5, 6}, Feryal Özel¹⁷, Antxon Alberdi⁷, Walter Alef¹, Keiichi Asada²¹, Anne-Kathrin Baczko¹, David Ball¹⁷, Mislav Baloković^{5,6}, John Barrett¹², Dan Bintley²², Wilfred Boland²³, Geoffrey C. Bower²⁴, Michael Bremer²⁵, Christiaan D. Brinkerink¹⁶, Roger Brissenden^{5,6}, Silke Britzen¹, Dominique Broguiere²⁵, Thomas Bronzwaer¹⁶, Do-Young Byun^{26,27}, John E. Carlstrom^{28,29,30,31}, Shami Chatterjee³², Koushik Chatterjee³³, Ming-Tang Chen²⁴, Yongjun Chen^{34,35}, Ilje Cho^{26,27}, Pierre Christian^{17,6}, John E. Conway³⁶, James M. Cordes³², Geoffrey B. Crew¹², Yuzhu Cui^{37,38}, Jordy Davelaar¹⁶, Mariafelicia De Laurentis^{39,40,41}, Roger Deane^{42,43}, Jessica Dempsey²², Gregory Desvignes^{44,1}, Jason Dexter⁴⁵, Sheperd S. Doeleman^{5,6}, Ralph P. Eatough¹, Heino Falcke¹⁶, Vincent L. Fish¹², Ed Fomalont¹¹, Raquel Fraga-Encinas¹⁶, Per Friberg²², Christian M. Fromm⁴⁰, Peter Galison^{5,46,47}, Charles F. Gammie^{48,49}, Roberto García²⁵, Olivier Gentaz²⁵, Boris Georgiev^{3,4}, Ciriaco Goddi^{16,50}, Roman Gold⁴⁰, Minfeng Gu^{34,51}, Mark Gurwell⁶, Kazuhiro Hada^{37,38}, Michael H. Hecht¹², Ronald Hesper⁵², Luis C. Ho^{53, 54}, Paul Ho²¹, Mareki Honma^{37, 38}, Chih-Wei L. Huang²¹, Lei Huang^{34, 51}, David H. Hughes⁵⁵, Shiro Ikeda^{13, 56, 57, 58}, Makoto Inoue²¹, David J. James^{5, 6}, Buell T. Jannuzi¹⁷, Britton Jeter^{3, 4}, Wu Jiang³⁴, Alejandra Jimenez-Rosales⁴⁵, Taehyun Jung^{26,27}, Mansour Karami^{2,3}, Ramesh Karuppusamy¹, Tomohisa Kawashima¹³, Garrett K. Keating⁶, Mark Kettenis⁵⁹, Junhan Kim^{17,8}, Jongsoo Kim²⁶, Motoki Kino^{13,60}, Jun Yi Koay²¹, Patrick M. Koch²¹, Shoko Koyama²¹, Michael Kramer¹, Carsten Kramer²⁵, Cheng-Yu Kuo⁶¹, Tod R. Lauer⁶², Sang-Sung Lee²⁶, Yan-Rong Li⁶³, Zhiyuan Li^{64,65}, Michael Lindqvist³⁶, Rocco Lico¹, Kuo Liu¹, Elisabetta Liuzzo⁶⁶, Wen-Ping Lo^{21,67}, Andrei P. Lobanov¹, Laurent Loinard^{68,69}, Colin Lonsdale¹², Ru-Sen Lu^{1,34}, Nicholas R. MacDonald¹, Jirong Mao^{70,71,72}, Sera Markoff^{33,73}, Daniel P. Marrone¹⁷, Iván Martí-Vidal⁷⁴, Satoki Matsushita²¹, Lynn D. Matthews¹², Lia Medeiros^{17,75}, Karl M. Menten¹, Yosuke Mizuno⁴⁰, Izumi Mizuno²², James M. Moran^{5,6}, Kotaro Moriyama^{12,37}, Monika Moscibrodzka¹⁶, Cornelia Müller^{1,16}, Hiroshi Nagai^{13,38}, Neil M. Nagar⁷⁶ Masanori Nakamura²¹, Ramesh Narayan^{5,6}, Gopal Narayanan⁷⁷, Iniyan Natarajan⁴³, Roberto Neri²⁵, Chunchong Ni^{3,4}, Aristeidis Noutsos¹, Hiroki Okino^{37,78}, Héctor Olivares¹⁶, Gisela N. Ortiz-León¹, Tomoaki Oyama³⁷, Daniel C. M. Palumbo^{5,6}, Nimesh Patel⁶, Jongho Park²¹, Ue-Li Pen^{2,79,80,81}, Vincent Piétu²⁵, Richard Plambeck⁸², Aleksandar PopStefanija⁷⁷, Oliver Porth^{33,40}, Ben Prather⁴⁸, Jorge A. Preciado-López², Dimitrios Psaltis¹⁷, Hung-Yi Pu², Venkatessh Ramakrishnan⁷⁶, Ramprasad Rao²⁴, Mark G. Rawlings²², Alexander W. Raymond^{5,6}, Luciano Rezzolla⁴⁰, Bart Ripperda^{83, 84}, Freek Roelofs¹⁶, Alan Rogers¹², Eduardo Ros¹, Mel Rose¹⁷, Arash Roshanineshat¹⁷, Helge Rottmann¹, Alan L. Roy¹, Chet Ruszczyk¹², Benjamin R. Ryan^{85,86}, Kazi L. J. Rygl⁶⁶, Salvador Sánchez⁸⁷, David Sánchez-Arguelles^{55,88}, Mahito Sasada^{37,89}, F. Peter Schloerb⁷⁷, Karl-Friedrich Schuster²⁵, Lijing Shao^{1,54}, Zhiqiang Shen^{34,35}, Des Small⁵⁹, Bong Won Sohn^{26,27,90}, Jason SooHoo¹², Fumie Tazaki³⁷, Paul Tiede^{3,4}, Remo P. J. Tilanus^{16,50,91}, Michael Titus¹², Kenji Toma^{92,93}, Pablo Torne^{1,87}, Tyler Trent¹⁷, Thalia Traianou¹, Sascha Trippe⁹⁴, Shuichiro Tsuda³⁷, Ilse van Bemmel⁵⁹, Huib Jan van Langevelde^{59,95}, Daniel R. van Rossum¹⁶, Jan Wagner¹, John Wardle⁹⁶, Derek Ward-Thompson⁹⁷, Jonathan Weintroub^{5,6}, Norbert Wex¹, Robert Wharton¹, George N. Wong⁴⁸, Qingwen Wu⁹⁸, André Young¹⁶, Ken Young⁶, Ziri Younsi^{99,40}, Feng Yuan^{34,51,100}, Ye-Fei Yuan¹⁰¹, J. Anton Zensus¹, Guangyao Zhao²⁶, Shan-Shan Zhao^{16,64}, and Ziyan Zhu⁴⁷ (The Event Horizon Telescope Collaboration)

(Affiliations can be found after the references)

Submitted: January 13, 2020

EHT 2017 observations of 3C 279

- Full-track observations over four nights in 2017 Apr (as main target and calibrator)
- SPT provides maximum N-S baselines: ~8.9 Glambda
- Also accompanying MWL VLBI observations by GMVA 86 GHz, • VLBA 43/15 GHz
- Other dense MWL observations at all wavelengths (radio TeV) •

Kim+20, submitted

Zooming into the core of 3C279

- First image of 3C279 at 20 μ as resolution (see also EHTC+19c,d)
- Robust fringe detections up to 8.9 Glambda in all days, mild variability seen in the amplitudes
- The 1mm core structure elongated perpendicular to outer jet not visible in the low-frequency images

Zooming into the core of 3C279

- Four days average images over three imaging pipelines (4x3; SMILI, ehtim, Difmap)
- The perpendicular core structure persistent over four days
- Significant flux variability in the core, and small changes in other details

Substantial time variability!

- **CP clearly varies over days**; indicating structure change on inter/intra-day timescales
- More pronounced in bigger triangles; variability mainly comes from small scales
- Amplitudes don't change much
- What is actually varying in images?

Can closure phases vary just by ~1 µas shift?

- Yes, they can
- Also by flux changes, but somewhat weaker effects
- High enough SNR make the data sensitive
- Challenges to traditional VLBI data analysis

EHT-specific model-fitting analysis tools

- Various MCMC and relevant packages available: Themis (Broderick+20), Dynesty (Pesce+), GENA (Fromm+19)
- Fitting to various EHT measurements possible (closures, baseline visibilities etc)
- "Dynamic" modeling analysis also possible (in progress)

3C279 jet kinematics on daily & µas scales

Full posterior distributions from Themis time-variable model-fitting

Fully dynamical model-fitting -- fluxes, positions, sizes, and their time derivatives

µas scale jet kinematics in detail

- Extremely high S/N → ~1-2 µas level of positional uncertainty (classically, positional accuracy ~ Beam/SNR).
- C1 components move southward, only when C0-0 is used as reference.
- All components move by ~1-2 μ as/day (~10-20c) w.r.t. C0-0.
- App. speeds comparable to VLBA 15/43 GHz monitoring results on mas (pc) scales (e.g., Jorstad+17).
- C0-1 and C0-2 clearly show non-radial motions w.r.t. C0-0.

Discussions

Origin of the peculiar subnuclear structure

Broad jet base, perhaps associated with the accretion disk and/or edge-brightened jet, similar to 3C 84 (see Giovannini+18 for more discussions)?

Broad jet base/accretion disk?

- Viewing angles differ by large amounts: Radio galaxies (e.g., M87, 3C84, ... : ~> 20 deg) vs. Blazars (e.g., 3C279: ~< 2 deg)
 - Accretion disk (or base of a circular jet) would rather appear circular than narrow elliptical for small viewing angle

Other explanations?

- Many! for example...
- Oblique shocks
- Illuminating patterns (plasma instabilities) on the jet surface
- Large scale magnetic reconnection (a long, linear string of "plasmoids")

Spatially bent jet in 3C279

- A number of evidence suggesting presence of curvature in the 3C279 jet (e.g., Homan+03, Jorstad+04, Abdo+10, Aleksic+14, Homan+15, ...)
- May explain the complex geometry & kinematics without introducing unnecessary complexity

Testing a bent jet model for the "core"

Assuming constant Gamma=20 for CO-1 and CO-2 (theta ~3 and 1.5 deg).

Sketch of bending jet model (from Aleksic+14)

- Many suitable families of parameters to fit the apparent speed using a constant Lorentz factor but varying viewing angles along the jet (by a few degrees.).
- 90 deg apparent P.A. change would require ~90*sin(1-2 deg) ~ 1.5-3.0 deg jet viewing angle change; internally consistent values.

Comparison with pre-ALMA EHT obs. of 3C 279

-0.4

0.1

0.0

Relative RA (mas)

NB: data point size ~ comp. flux.

-0.2

-0.1

- In Apr 2011, similar innermost jet feature orientation was found by pre-ALMA EHT, during very high radio flux state.
- Later 2011, VLBA 43 GHz saw bright jet component in similar direction, later aligned to larger-scale jet.
- 2017 EHT observations may be similar.

What causes jet bending/rotation?

- Binary SMBHs and/or BH+disk precession (Abraham & Carrara 98; Qian+ 19; P~22 yrs for 3C 279) → EHT jet structure similarity between 2011 and 2017 would constrain period ~< 6 yrs, ruling out this scenario
- Jet being collimated by interaction with ISM (e.g., Homan+15) → misaligned AGN jet components tend to align with pre-established direction
- Excitation of emission going along helical magnetic field in the jet → Inner jet dynamics (e.g., Mertens+16) & polarization (Asada+02; Marscher+08; Hovatta+12; Kiehlmann+16)
- Understanding which one of these works better would require additional constraints (outlook)

How does the EHT 3C279 jet connect to the downstream?

- EHT jet speeds (~10-20c) are comparable to historical masscale speed measurements (before 2017)
- Constrains jet acceleration zone to be potentially
 < 3000Rs projected (~< 8x10^4 Rs deprojected)
- However in 2017 the 3C279 jet was exceptionally fast at ~>0.5 mas; ~37c speed (Larionov+20 in press)

Brightness temperature in the nuclear region

Table 2. Summary of geometric and dynamical properties of the jet components discussed in §4.2.1 and §4.2.2.

ID	$egin{array}{c} eta_{\mathrm{app}} \ (c) \end{array}$	θ (°)	Г	δ
Curved jet case ^a				
C0-1	16^{+3}_{-2}	≤ 1.5	≥ 20	≥ 32
C0-2	20 ± 1	≤ 2.9	≥ 20	≥ 20
C1-0/1/2	$(13 - 15) \pm 2$	$\geq 6-8$	≥ 20	$\leq 5-7$
Straight jet case ^b				
C1-0/1/2	$(13 - 15) \pm 2$	2	16 – 17	24 – 25

- Observed Tb ~ 10⁽¹⁰⁻¹¹⁾ K → Intrinsic T'b ~< 10⁽⁹⁻¹⁰⁾ K considering Doppler factors of at least ~10-20
- Tb ~> 10^12 K and T'b ~ 10^11 K at lower frequencies (Kovalev+05; Jorstad+17)
- EHT values far below Compton limit (~5x10^11 K) and the equipartition value (~5x10^10 K)

Interpretations of the low T'b

- Much depends on the core opacity at 230 GHz
- Optically thick (turnover ~ 1mm)
 - may represent some upstream emission of the jet. Signature of under-accelerated (thus slow) jet underlying the 1mm core.
 - Also T'b ~10^(9-10)K << T'b,eq ~ 5x10^10 K: more magnetic energy dominated flow (cf. kinetic power dominated)
- On the other hand, Tb may simply decrease with freq. if 3C279 becomes optically thin @ 1mm
- EHT spectral index measurement between 230 and 345 GHz would be helpful (also EHT polarimetry).

Conclusions

- EHT imaging analysis of the 3C 279 jet at 230 GHz
 - Peculiar "perpendicular" nuclear structure
 - Several physical interpretations
 - Rapid day-to-day closure phase variations; ~1-2 uas/day motions
 - Also complex kinematics; spatially bent jet provides good explanations
 - Unexpectedly low intrinsic brightness temperature (~< 10^10 K)
 - May be a signature of very low jet opacity at 230 GHz
- Still some details quite remain elusive
 - How to improve / what to do more?

Outlook

Plot removed

EHT and MWL connections

- Significant radio flux variability within the EHT subnuclear structure within ~1 week; factors ~2 or more changes
- Also rapid gamma-ray variability; details under analysis

Constraining the curved jet structure

- Rapid linear polarization variability (both *mL* and EVPA)
- Indicates small variable size and ordered evolution of structure (associated with motions?)
- Can independently reconstruct the curved jet parameters

Comparison uv-coverages 2017 - 2020 (for 3C279)

11 stations (+GLT+KP+NOEMA)

8 stations

Final outlook – hope to have soon

- Science side:
 - MWL / polarization
 - More sources (many already observed in 2017; all under analysis)
- Instrument side:
 - Expanding EHT in 2020
 - e-KVN and EAVN-high 230 GHz
 - Will provide a lot of insights about future EHT time-variable studies
- People, more people!