Kinematics of the M87 Jet in the Collimation Zone: Gradual Acceleration and Velocity Stratification

Jongho Park (ASIAA) In collaboration with Kazuhiro Hada, Motoki Kino, Masanori Nakamura, and EAVN AGN SWG

Highly Collimated and Relativistic Jets of AGNs

Highly collimated, very narrow jets

Jet Acceleration & Collimation

: a "pipeline" to produce highly collimated relativistic AGN jets

Total Energy Flux \approx Poynting Flux + Kinetic Energy Flux $\frac{\text{Poynting flux}}{\text{Total energy flux}} \propto r^2 B_p$ $B_p \delta S = \text{const}$ $\delta S = r \delta l_\perp$ $\frac{\text{Poynting flux}}{\text{Total energy flux}} \propto \frac{r}{\delta l_\perp}$

'Differential Collimation' of Poloidal Field Lines: Inner fields are more collimated than outer lines

Total Energy Flux \approx Poynting Flux + Kinetic Energy Flux

 $\frac{\text{Poynting flux}}{\text{Total energy flux}} \propto r^2 B_p$

$$B_p \delta S = \text{const} \qquad \delta S = r \delta l_\perp$$

 $\frac{\rm Poynting \ flux}{\rm Total \ energy \ flux} \propto \frac{r}{\delta l_{\perp}}$

'Differential Collimation' of Poloidal Field Lines: Inner fields are more collimated than outer lines

Total Energy Flux \approx Poynting Flux + Kinetic Energy Flux

 $\frac{\text{Poynting flux}}{\text{Total energy flux}} \propto r^2 B_p$

$$B_p \delta S = \text{const} \qquad \delta S = r \delta l_\perp$$

 $\frac{\rm Poynting \ flux}{\rm Total \ energy \ flux} \propto \frac{r}{\delta l_{\perp}}$

'Differential Collimation' of Poloidal Field Lines: Inner fields are more collimated than outer lines

Jet Collimation in nearby AGN jets

Jet Collimation in nearby AGN jets

Jet Collimation in M87

IS THE M87 JET ACCELERATED TO RELATIVISTIC SPEEDS IN THE COLLIMATION ZONE?

THE MOJAVE MONITORING PROGRAM

VLBA 15 GHz over ~10 years Sampling Interval : ~6 months

Modelfit works very well for most blazars whose jets consist of several "knots"

THE MOJAVE MONITORING PROGRAM

VLBA 15 GHz over ~10 years Sampling Interval : ~6 months

EVN OBSERVATIONS

EVN 1.6 GHz in three epochs Sampling Interval : ~1 year

Kinematics of the M87 jet : 2. Visual Inspection

Hada et al. (2016)

Kinematics of the M87 jet : 2. Visual Inspection

different epochs by 'Visual Inspection'

Kinematics of the M87 jet : 3. WISE

Mertens et al. (2016)

WISE (Wavelet-based Image Segmentation and Evaluation)

Wavelet Transformation (Detect brightness patterns)

2D Cross-Correlation (Kinematics)

Kinematics of the M87 jet : 3. WISE

WISE (Wavelet-based Image Segmentation and Evaluation)

Wavelet Transformation (Detect brightness patterns)

2D Cross-Correlation (Kinematics)

The brightness difference : due to the Doppler boosting/deboosting

KVN and VERA Array (KaVA)

- Good Sensitivity.
- Reasonably good angular resolution.
- Good uv-coverage.

 \rightarrow KaVA Large Program : Observations of M87 'biweekly' at 22 & 43 GHz (~10 epochs per year).
KVN and VERA Array (KaVA)

- Good Sensitivity.
- Reasonably good angular resolution.
- Good uv-coverage.

 \rightarrow KaVA Large Program : Observations of M87 'biweekly' at 22 & 43 GHz (~10 epochs per year).

KVN and VERA Array (KaVA) → The East Asian VLBI Network (EAVN)

An + (2018)

KaVA observations in 2016 : 1. modelfit

QG3 57d OG 70d 80d 100d 113d

145d 154d

167d

2

Offset in Jet Direction (mas)

43 GHz

-8

KaVA observations in 2016 : 1. modelfit

KaVA observations in 2016 : 2. Visual Inspection

THE KAVA LARGE PROGRAM (~2 WEEKS)

KaVA observations in 2016 : 3. WISE

THE KAVA LARGE PROGRAM (~2 WEEKS)

VLBA ARCHIVAL DATA ANALYSIS

VLBA 1.7 GHz over ~4 years Sampling Interval : ~2 months

Compared to the EVN observations by Asada et al...

- Improved Sensitivity (by a factor of > a few).
- Improved Angular Resolution (by a factor of >2).
- Denser Monitoring (Interval : ~2 months).

VLBA archival data analysis : 1. modelfit

VLBA archival data analysis : 2. WISE

We studied jet acceleration of M87 with KaVA and VLBA data and our results suggest a **GRADUAL JET ACCELERATION IN THE SAME REGION AS THE COLLIMATION ZONE.** \rightarrow **SUPPORTS THE MAGNETIC JET ACCELERATION MODEL.**

We studied jet acceleration of M87 with KaVA and VLBA data and our results suggest a **GRADUAL JET ACCELERATION IN THE SAME REGION AS THE COLLIMATION ZONE.** \rightarrow **SUPPORTS THE MAGNETIC JET ACCELERATION MODEL.**

Discussion: Origin of the stationary features in the jet?

Several 'apparently stationary' features exist in the jet at ~20, ~65, and ~165 mas.

Discussion: Origin of the stationary features in the jet?

Several 'apparently stationary' features exist in the jet at ~20, ~65, and ~165 mas.

Several 'apparently stationary' features exist in the jet at ~20, ~65, and ~165 mas. \rightarrow They may not be 'physically' stationary but result from the re-brightening of the jet (regions of particle acceleration? Or local Doppler boosting enhancement?).

— The jet motion is not as fast as what GRMHD simulations showed on < a few hundreds Rs.

— The jet motion is not as fast as what GRMHD simulations showed on < a few hundreds Rs.

Discussion: Slow Jet Acceleration

Kinematics of the M87 jet : 4. Jet-to-counterjet brightness ratio

The brightness difference : due to the Doppler boosting/deboosting

Kinematics of the M87 jet : 4. Jet-to-counterjet brightness ratio

Kinematics of the M87 jet : 4. Jet-to-counterjet brightness ratio

— The jet motion is not as fast as what GRMHD simulations showed on < a few hundreds Rs.

Discussion: Slow Jet Acceleration

Discussion: Slow Jet Acceleration

Discussion: Slow Jet Acceleration

Discussion: Slow Jet Acceleration

THE HIGHLY MAGNETIZED JET BASE OF M87

 $U_B \gg U_p$

— The jet motion is not as fast as what the models of highly magnetized jet predict.

The Poynting flux conversion may not be as efficient as in an ideal case.

Discussion: Slow Jet Acceleration

Additional mass entrainment from the outer slower winds?

- At a given distance bin, a wide range of speed is observed at all distances we probed.

- At a given distance bin, a wide range of speed is observed at all distances we probed.

Discussion: Velocity Stratification

Discussion: Velocity Stratification

At a given distance bin, a wide range of speed is observed at all distances we probed.
The observed jet may consist of 'multiple streamlines' following different acceleration profiles, naturally resulting in the lateral velocity stratification.

— Whether the 'lower envelope' shows an acceleration feature or not would be important to test these scenarios.

— Whether the 'lower envelope' shows an acceleration feature or not would be important to test these scenarios.

Conclusions (Park et al. 2019b, ApJ, 887, 147)

— We studied the jet kinematics by using the densely monitored data observed with KaVA at 22 and 43 GHz and using archival VLBA data at 1.7 GHz.

— We found that the M87 jet is gradually accelerated to relativistic speeds in the same region as the jet collimation zone, as predicted by MHD models.

Backup Slides

Jets must be confined (or collimated) by an external medium!

Mizuno+ (2007)

