Event Horizon Telescope Next Steps: EHT 2020s, ngEHT, and Space Extension

MIT Haystack Observatory NRAO Jansky Fellow —> MIT Research Scientist

Event Horizon Telescope

Kazu Akiyama

First M87 Results: Where are we now?

- Einstein's GR has passed a new test at an extremely strong gravitational field
- The strongest evidence for the presence of a supermassive black hole
- The M87 central black hole is most likely spinning
- An AGN and associated jet are powered by a supermassive black hole
- The stellar dynamical mass is correct (6.5 billion masses)
- Day-to-day variations on horizon scale

Dawn of a New Era of Black Hole Astrophysics

Testing General Relativity

M87 Mass: the mass uncertainty is large

Event Horizon Telescope

Testing General Relativity

M87 Mass: the mass uncertainty is large

Event Horizon Telescope

Kazu Akiyama, "Active Galactic Nucleus Jets in the Event Horizon Telescope Era", Tohoku University, 2020/01/20 (Mon)

- Separate the photon ring emission from the surrounding accretion flow and jet

EHTC+19 Paper I

Testing General Relativity

M87 Mass: the mass uncertainty is large

- Separate the photon ring emission from the surrounding accretion flow and jet
- Short time window (< a week): may significantly be affected by transient feature

BH Magnetosphere, Accretion and Jet

Tracking evolving features in M87

Event Horizon Telescope

Kazu Akiyama, "Active Galactic Nucleus Jets in the Event Horizon Telescope Era", Tohoku University, 2020/01/20 (Mon)

EHTC+19 Paper I

BH Magnetosphere, Accretion and Jet

- Tracking evolving features in M87
- Black Hole Magnetosphere: Magnetic Flux (SANE / MAD)

Event Horizon Telescope

Kazu Akiyama, "Active Galactic Nucleus Jets in the Event Horizon Telescope Era", Tohoku University, 2020/01/20 (Mon)

EHTC+19 Paper I

BH Magnetosphere, Accretion and Jet

Tracking evolving features in M87 Black Hole Magnetosphere: Magnetic Flux (SANE / MAD) Jet launching: how is the energy extracted from the black hole?

Event Horizon Telescope

M87 Polarimetry: Coming Soon

Event Horizon Telescope

Kazu Akiyama, "Active Galactic Nucleus Jets in the Event Horizon Telescope Era", Tohoku University, 2020/01/20 (Mon)

Akiyama et al. 2017, Chael et al. 2016

Sgr A*: Another Horizon-scale Target

Best target for the GR test

Mass & Distance are accurately measured _ (GRAVITY Collaboration+2018)

Current challenges

- Time variations: on minutes time scales
- Interstellar Scattering: much less dominant

Event Horizon Telescope

Kazu Akiyama, "Active Galactic Nucleus Jets in the Event Horizon Telescope Era", Tohoku University, 2020/01/20 (Mon)

GRAVITY Collaboration+2018

Weather forecast: Sgr A*

An illustrative full-closure imaging simulation with EHT 2017 array

Event Horizon Telescope

Kazu Akiyama, "Active Galactic Nucleus Jets in the Event Horizon Telescope Era", Tohoku University, 2020/01/20 (Mon)

Model: Broderick & Loeb 2006, Imaging: Kotaro Moriyama

EHT2020s: EHT within 3 years from now

Doeleman et al. 2019, Astro2020 white paper

2017: 230 GHz, 32 Gbps, 8 stations @ 6 sites 2023: 230 & 345 GHz, 64 Gbps, 12 stations @ 10 sites

Event Horizon Telescope

Kazu Akiyama, "Active Galactic Nucleus Jets in the Event Horizon Telescope Era", Tohoku University, 2020/01/20 (Mon)

2018:

- **Bandwidth:** 32 Gbps -> 64 Gbps -
- **New Station:** _
 - GLT (under commissioning)

2020:

New Stations: GLT (official) NOEMA & Kitt Peak (KP)

2023:

- **New Station:** Owens Valley (OVRO)
- 345 GHz Capability

EHT 2020s: Deeper, Shaper & Multi-frequency Images

230 GHz EHT2017+GLT

Further new capabilities: Faraday Rotation Imaging

Active developments of multi-frequency (Chael+) and multi-scale (Akiyama+) Imaging

Event Horizon Telescope

Kazu Akiyama, "Active Galactic Nucleus Jets in the Event Horizon Telescope Era", Tohoku University, 2020/01/20 (Mon)

230+345 GHz EHT2017+GLT+KP+NOEMA+OVRO

Simulations: Andrew Chael, Imaging: Kazu Akiyama

EHT 2020s: Tracking Evolving Features

Regular monitoring observation capabilities on weekly scales

Event Horizon Telescope

Kazu Akiyama, "Active Galactic Nucleus Jets in the Event Horizon Telescope Era", Tohoku University, 2020/01/20 (Mon)

Simulations: Charles Gammie, George Wong et al., Imaging: Michael Johnson

EHT 2020s: Precision Black Hole Astrophysics

Mass? Spin? Accretion flow types? Viewing Geometry?

Event Horizon Telescope

Kazu Akiyama, "Active Galactic Nucleus Jets in the Event Horizon Telescope Era", Tohoku University, 2020/01/20 (Mon)

https://www.youtube.com/watch?v=0ymmnHlnDVY

EHT 2020s: Precision Black Hole Astrophysics

Are black hole images confusing for scientists and/or AI?

Event Horizon Telescope

Kazu Akiyama, "Active Galactic Nucleus Jets in the Event Horizon Telescope Era", Tohoku University, 2020/01/20 (Mon)

https://barkpost.com/humor/doodle-or-fried-chicken-twitter/

EHT 2020s: Precision Black Hole Astrophysics

Van der Gucht et al. 2019

Event Horizon Telescope

Kazu Akiyama, "Active Galactic Nucleus Jets in the Event Horizon Telescope Era", Tohoku University, 2020/01/20 (Mon)

Current forecast: Horizon-scale images are much less confusing!

next generation Event Horizon Telescope (2023 -)

Phase I: 2019-2023 (Array Design Phase + MIT Haystack as a new site) **Phase II:** 2023- (Constructions of several new telescopes)

Event Horizon Telescope

M87 ngEHT images: ~10 years from now

Blackburn et al. 2019; Doeleman et al. 2019 (Astro2020 Decadal Survey White Papers)

Event Horizon Telescope

ngEHT: far more details

Astro2020 APC White Paper Studying Black Holes on Horizon Scales with **VLBI** Ground Arrays

Lindy Blackburn^{1,2,*} Sheperd Doeleman^{1,2,*}, Jason Dexter¹², José L. Gómez¹⁶, Michael D. Johnson^{1,2}, Daniel C. Palumbo^{1,2}, Jonathan Weintroub^{1,2}, Joseph R. Farah^{1,2,21}, Vincent Fish⁴, Laurent Loinard^{18,19}, Colin Lonsdale⁴, Gopal Narayanan²⁸, Nimesh A. Patel², Dominic W. Pesce^{1,2}, Alexander Raymond^{1,2}, Remo Tilanus^{17,22,23}, Maciek Wielgus^{1,2}, Kazunori Akiyama^{1,3,4,5}, Geoffrey Bower⁶, Avery Broderick^{7,8,9}, Roger Deane^{10,11}, Christian Michael Fromm¹³, Charles Gammie^{14,15}, Roman Gold¹³, Michael Janssen¹⁷, Tomohisa Kawashima⁴, Thomas Krichbaum²⁹, Daniel P. Marrone²⁰, Lynn D. Matthews⁴, Yosuke Mizuno¹³, Luciano Rezzolla¹³, Freek Roelofs¹⁷, Eduardo Ros²⁹, Tuomas K. Savolainen^{29,30,31}, Feng Yuan^{24,25,26}, Guangyao Zhao²⁷

¹ Black Hole Initiative at Harvard University, 20 Garden Street, Cam- and Particle Physics (IMAPP), Radboud University, P.O. Box 9010, bridge, MA 02138, USA 6500 GL Nijmegen, The Netherlands Event Horizon Telescope

Kazu Akiyama, "Active Galactic Nucleus Jets in the Event Horizon Telescope Era", Tohoku University, 2020/01/20 (Mon)

Astro2020 APC WP

Blackburn+

EHT beyond the Earth: Why do we need?

Ground limitations:

Telescope Coverages

Limiting snapshot imaging of Sgr A* and multi-epoch observations

Angular resolution

- The maximum diameter = the Earth diameter

Event Horizon Telescope

Not so many sites capable of sub-mm VLBI observations Snapshot coverages will be highly limited by Earth rotation

Frequency / wavelength: limited by atmosphere (up to ~350 GHz)

Sub-Rs scale imaging of M87/Sgr A*, more horizon-scale targets

EHT beyond the Earth: Designing towards late 2020

Event Horizon Telescope

Kazu Akiyama, "Active Galactic Nucleus Jets in the Event Horizon Telescope Era", Tohoku University, 2020/01/20 (Mon)

1st KISS Workshop, Sep 2019

EHT beyond the Earth: Designing towards late 2020

- Astro 2020 Science and APC white papers (Doeleman+, Haworth+, Pesce+)
- Active International Discussions Sep 2018: 1st International Space VLBI conference @ Netherland Sep 2019: 1st KISS Workshop @ USA (invitation only) Jan 2020: 2nd International Space VLBI conference @ USA (Next week!) June 2020: 2nd KISS Workshop @ USA (invitation only)

Event Horizon Telescope

Kazu Akiyama, "Active Galactic Nucleus Jets in the Event Horizon Telescope Era", Tohoku University, 2020/01/20 (Mon)

Astro2020 APC White Paper

Extremely Long-Baseline Interferometry with the Origins Space Telescope

DOMINIC W. PESCE^{1,2}, KARI HAWORTH¹, GARY J. MELNICK¹, LINDY BLACKBURN^{1,2}, MACIEK WIELGUS^{1,2}, ALEXANDER RAYMOND^{1,2}, JONATHAN WEINTROUB¹, DANIEL C. M. PALUMBO^{1,2}, MICHAEL D. JOHNSON^{1,2}, SHEPERD S. DOELEMAN^{1,2}, DAVID J. JAMES^{1,2}

1st KISS Workshop, Sep 2019

EHT+LEO: Better Snapshot Imaging

EHT+MEO/GEO: (sub-)R_s-scale Imaging of M87 / Sgr A*

Event Horizon Telescope

Kazu Akiyama, "Active Galactic Nucleus Jets in the Event Horizon Telescope Era", Tohoku University, 2020/01/20 (Mon)

(Kawashima, Kino & Akiyama 2019, ApJ)

EHT+MEO/GEO: Horizon-scale Imaging of other SMBHs

Kazu Akiyama, "Active Galactic Nucleus Jets in the Event Horizon Telescope Era", Tohoku University, 2020/01/20 (Mon)

M104 (Sombrero Galaxy)

Fish, Shea & Akiyama 2019

Far more accurate shadow measurements?

Johnson et al. 2019

Far more accurate shadow measurements?

Weather Forecast of the EHT era: Awesome!

EHT in the next three years:

- Sgr A* & M87 Polarimetry
- Doubled bandwidth (2018-): Higher sensitivity & Rotation Measure Imaging
- Four new stations until 2023: Higher dynamic range (few/several 100s)
- Higher angular resolution: 345 GHz (0.87 mm)
- Time domain: Monitoring Capability

mid-late 2020s: Expanding the Array to the ngEHT

Higher Dynamic Range (~1000s), Better sensitivity

late 2020s-2030s: Expanding the ngEHT to space:

Event Horizon Telescope

- Better snapshot, sub-Rs-scale imaging, more horizon-scale targets

