天体ニュートリノを用いた

宇宙線起源天体の探索

東北大学 天文学専攻

学際科学フロンティア研究所

(Shigeo S. Kimura) TOHOKU UNIVERSITY

宇宙線で繋ぐ文明・地球環境・太陽系・銀河@京都大学

木村成生

2022/10/25-10/26

・宇宙線と天体高エネルギーニュートリノ

・宇宙ニュートリノ背景放射と起源天体候補

・まとめ

・宇宙線と天体高エネルギーニュートリノ

・宇宙ニュートリノ背景放射と起源天体候補

・まとめ

従来の研究

• $\pi^0 \rightarrow 2\gamma$

• $\pi^{\pm} \rightarrow 3\nu + e$

• $p+p \rightarrow p+p+\pi$

- ・ pp 非弾性散乱

原子核、または光子と相互作用してニュートリノ生成 ニュートリノと同時に同量のガンマ線が生成される

50 m

IceCube Laboratory

Data is collected here and sent by satellite to the data warehouse at UW–Madison

1450 m

Digital Optical Module (DOM) 5,160 DOMs deployed in the ice

2450 m

lceCube detector

IceTop

86 strings of DOMs, set 125 meters apart

Antarctic bedrock

IceCube 2013 PRL

180⁰

2013年: 天体ニュートリノ検出の報告

ミュートリノの検出

Arrival directions of most energetic neutrino events

IceCube-Gen2 2020

・空の全ての方向から一様に到来

→ 宇宙ニュートリノ背景放射

宇宙ニュートリノ背景放射スペクトル

- エネルギー&検出数
- → スペクトルの構築
- 低いエネルギーのニュートリノが 多く地球に届いている
- ・起源天体は新たな大問題

11

・宇宙線と天体高エネルギーニュートリノ

・宇宙ニュートリノ背景放射と起源天体候補

ニュートリノ天体同定の困難

- 光学望遠鏡の視力 ~ 300 (すばる望遠鏡)
- ニュートリノ望遠鏡の視力 ~ 0.02 (強度近視) • ニュートリノ事象の到来方向
 - を可視光で見ると多数の天体

理論予言による サポートが必須

IceCube以前の理論モデル

ガンマ線バースト

Waxman & Bahcall 1997 Dermer & Atoyan 2003 Guetta et al. 2004

Colliding shells emit gamma rays (internal shock wave model) Jet collides with

ambient medium (external shock wave)

Very high-energy

gamma rays (> 100 GeV)

• ブレーザー

Manheim & Biermann 1989 Halzen & Zas 1997

- 宇宙で最も明るい定常天体
- ・超大質量ブラックホール(太陽の|億倍の質量)の重力エネルギーを変換
- 相対論的ジェットで宇宙線加速

IceCube以前の理論モデル2: ブレーザー

IceCube以前の理論モデル

ガンマ線バースト

Waxman & Bahcall 1997 Dermer & Atoyan 2003 Guetta et al. 2004

• 非常に明るいガンマ線放射 —> 宇宙線電子の存在 • 陽子が同時に加速されていれば、py反応でニュートリノ生成

ambient medium external shock wave)

Very high-energy

gamma rays

• ブレーザー

IceCubeの観測結果

Waxman & Bahcall 1997 Dermer & Atoyan 2003 Guetta et al. 2004

Colliding shells emit gamma rays (internal shock wave model)

Black hole engine

Prompt emission

low-energy (< 0.1 GeV) t high-energy (to 100 GeV) **aam**ma rays

Afterglow

ambient medium (external shock wave)

Very high-energy

M High-energy

X-rays

gamma rays (> 100 GeV)

gamma rays

Visible light

Radio

GRB発生した時間と方向から 天体ニュートリノが来ていない Manheim & Biermann 1989 Halzen & Zas 1997

ガンマ線で明るいブレーザーの 方向からニュートリノは来ていない

セイファート銀河がニュートリノ源?

 IceCube実験10年分のデータでの点源探索 - M77 (NGC 1068) から2.9σの信号

- セイファート銀河
 - 銀河の中心が明るく輝く天体 (活動銀河核)
 - 超大質量ブラックホールが物質を降着
 - 重力エネルギーの解放
 - —> 高温のプラズマ流 (降着流)を形成

活動銀河核降着流からのニュートリノ放射

乱流加速を考慮して 宇宙線の加速を解く 二次電子とガンマ線の 輸送を解く

SSK et al. 2021 Murase, SSK+ 2020

ガンマ線・ニュートリノ放射

高エネルギー粒子反応過程 $p+p \rightarrow p+p+\pi$ $p+\gamma \rightarrow p+\pi$ $\pi \rightarrow \gamma+e+\nu$ $\gamma+\gamma \rightarrow e+e$ $e+\gamma \rightarrow e+\gamma$

高温プラズマ

乱流

宇宙線

乱流による 相互作用

- ・明るい活動銀河核と暗い活動銀河核 で別々に理論モデル化
- 多波長観測データを用いて 物理パラメータを較正
- ・天体ニュートリノデータを説明可能

・宇宙線と天体高エネルギーニュートリノ

・宇宙ニュートリノ背景放射と起源天体候補

・まとめ

まとめ

- 高エネルギー宇宙線と天体ニュートリノの起源は未解明の大問題
- 過去に提案されていた理論モデルは観測と不整合
- ・ブラックホール降着流からのニュートリノ放射理論モデルを構築 →天体ニュートリノデータを説明することが可能
- · 今後はlceCube実験の公開データを使って、自分でモデルの検証を行いたい

