Subsections

2 Bessel微分方程式

Bessel Function: $ J_{{n}}(z)$は以下の微分方程式の解である:

$\displaystyle \dII{z}y_{n}(z) +\frac{1}{z}\dI{z}y_{n}(z) +\left(1-\frac{n^2}{z^2}\right)y_{n}(z) =0 .$ (39)

1 証明

$\displaystyle 2\dI{z}J_{{n}}(z)
=
J_{{n-1}}(z)-J_{{n+1}}(z)
=\frac{2n}{z}J_{{n}}(z)
-J_{{n+1}}(z)-J_{{n+1}}(z)
=\frac{2n}{z}J_{{n}}(z) -2J_{{n}}(z)
$

$\displaystyle \Longrightarrow
\quad
\left(
-\dI{z}
+
\frac{n}{z}
\right)J_{{n}}(z)
=J_{{n+1}}(z)$   :上昇演算子$\displaystyle $

$\displaystyle 2\dI{z}J_{{n}}(z)
=
J_{{n-1}}(z)-J_{{n+1}}(z)
=J_{{n-1}}(z)
-\frac{2n}{z}J_{{n}}(z)+J_{{n-1}}(z)
=-\frac{2n}{z}J_{{n}}(z)+2J_{{n+1}}(z)
$

$\displaystyle \Longrightarrow
\quad
\left(
\dI{z}
+
\frac{n}{z}
\right)J_{{n}}(z)
=J_{{n-1}}(z)$   :下降演算子$\displaystyle $

% latex2html id marker 3406
$\displaystyle \therefore\quad
\left(\dI{z}+\frac{n+...
...t) \left(-\dI{z}+\frac{n}{z}\right)J_{{n}}(z)
=J_{{n}}(z)
\,
\longrightarrow
\,$   Eq.(39)$\displaystyle $

著者: 茅根裕司 chinone_at_astr.tohoku.ac.jp