Subsections

2 $ n\gg 1$の時の $ J_{2n}(2n\xi )$の振る舞い

$ n\gg 1$の時以下の式が成り立つ:

$\displaystyle J_{2n}(2n\xi) \sim\frac{1}{n^{1/3}\sqrt{\pi}} \Phi\left( n^{2/3} \left[ 1-\xi^2 \right] \right) .$ (56)

1 証明

$ n\gg 1,, \xi \sim 1$

$\displaystyle J_{2n}(2n\xi)$ $\displaystyle = \frac{1}{\pi} \int_0^{\infty} \cos\left[ 2n \left( \frac{1-\xi^...
...ght) \zeta \right] d\zeta \, ; \quad n\zeta^3=\eta^3, \, d\zeta = n^{-1/3}d\eta$    
  $\displaystyle = \frac{n^{-1/3}}{\pi} \int_0^\infty \cos\left[ \frac{\eta^3}{3} ...
...= \frac{1}{n^{1/3}\sqrt{\pi}} \Phi\left( n^{2/3} \left[ 1-\xi^2 \right] \right)$    

Eq.(56)の両辺を$ 2n\xi$で微分すると以下を得る:

$\displaystyle \dI{(2n\xi)} J_{2n}(2n\xi)$ $\displaystyle =J_{2n}'(2n\xi) = \frac{1}{n^{1/3}\sqrt{\pi}} \Phi'\left(n^{2/3}\...
...\frac{1}{n^{2/3}\sqrt{\pi}} \xi \Phi'\left(n^{2/3}\left[1-\xi^2\right]\right) .$ (57)

著者: 茅根裕司 chinone_at_astr.tohoku.ac.jp